Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice

A Corrigendum to this article was published on 03 May 2016

This article has been updated

Abstract

Topologically stable matter can have a long lifetime, even if thermodynamically costly, when the thermal agitation is sufficiently low1,2. A magnetic skyrmion lattice (SkL) represents a unique form of long-range magnetic order that is topologically stable3,4,5,6,7,8,9, such that a long-lived, metastable SkL can form. Experimental observations of the SkL in bulk crystals, however, have mostly been limited to a finite and narrow temperature region in which the SkL is thermodynamically stable5,7,10,11,12,13,14; thus, the benefits of the topological stability remain unclear. Here, we report a metastable SkL created by quenching a thermodynamically stable SkL. Hall-resistivity measurements of MnSi reveal that, although the metastable SkL is short-lived at high temperatures, the lifetime becomes prolonged (1 week) at low temperatures. The manipulation of a delicate balance between thermal agitation and the topological stability enables a deterministic creation/annihilation of the metastable SkL by exploiting electric heating and subsequent rapid cooling, thus establishing a facile method to control the formation of a SkL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metastable skyrmion lattice stabilized under rapid cooling.
Figure 2: Magnetic state diagrams of MnSi under equilibrium and quenched conditions.
Figure 3: Lifetime of the metastable skyrmion lattice.
Figure 4: Creation and annihilation of the metastable skyrmion lattice through thermal control.

Similar content being viewed by others

Change history

  • 14 April 2016

    In the version of this Letter originally published the pulse heights in the pulse sequence in Figure 4c were incorrect. This has now been corrected in the online versions of the Letter.

References

  1. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  2. Michel, L. Symmetry defects and broken symmetry. Configurations hidden symmetry. Rev. Mod. Phys. 52, 617–651 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  3. Bogdanov, A. & Yablonskii, D. A. Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101–103 (1989).

    Google Scholar 

  4. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994).

    Article  ADS  Google Scholar 

  5. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  6. Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B 81, R041203 (2010).

    Article  ADS  Google Scholar 

  7. Moskvin, E. et al. Complex chiral modulations in FeGe close to magnetic ordering. Phys. Rev. Lett. 110, 077207 (2013).

    Article  ADS  Google Scholar 

  8. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  ADS  Google Scholar 

  9. Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Mater. 10, 106–109 (2011).

    Article  ADS  Google Scholar 

  10. Pfleiderer, C. et al. Skyrmion lattices in metallic and semiconducting B20 transition metal compounds. J. Phys. Condens. Matter 22, 164207 (2010).

    Article  ADS  Google Scholar 

  11. Bauer, A. et al. Quantum phase transitions in single-crystal Mn1−xFexSi and Mn1−xCoxSi: Crystal growth, magnetization, ac susceptibility, and specific heat. Phys. Rev. B 82, 064404 (2010).

    Article  ADS  Google Scholar 

  12. Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    Article  ADS  Google Scholar 

  13. Franz, C. et al. Real-space and reciprocal-space Berry phases in the Hall effect of Mn1−xFexSi. Phys. Rev. Lett. 112, 186601 (2014).

    Article  ADS  Google Scholar 

  14. Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nature Commun. 6, 7638 (2015).

    Article  ADS  Google Scholar 

  15. Bundy, F. P. et al. The pressure–temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).

    Article  Google Scholar 

  16. Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 14, 3576–3586 (2014).

    Article  Google Scholar 

  17. Ritz, R. et al. Giant generic topological Hall resistivity of MnSi under pressure. Phys. Rev. B 87, 134424 (2013).

    Article  ADS  Google Scholar 

  18. Lee, M., Kang, W., Onose, Y., Tokura, Y. & Ong, N. P. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 102, 186601 (2009).

    Article  ADS  Google Scholar 

  19. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  ADS  Google Scholar 

  20. Ye, J. et al. Berry phase theory of the anomalous Hall effect: Application to colossal magnetoresistance manganites. Phys. Rev. Lett. 83, 3737–3740 (1999).

    Article  ADS  Google Scholar 

  21. Bruno, P., Dugaev, V. K. & Taillefumier, M. Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004).

    Article  ADS  Google Scholar 

  22. Milde, P. et al. Unwinding of a Skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  ADS  Google Scholar 

  23. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  ADS  Google Scholar 

  24. Raoux, S. Phase change materials. Annu. Rev. Mater. Res. 39, 25–48 (2009).

    Article  ADS  Google Scholar 

  25. Oike, H. et al. Phase-change memory function of correlated electrons in organic conductors. Phys. Rev. B 91, R041101 (2015).

    Article  ADS  Google Scholar 

  26. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  ADS  Google Scholar 

  27. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nature Nanotech. 8, 742–747 (2013).

    Article  ADS  Google Scholar 

  28. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 8, 839–844 (2013).

    Article  ADS  Google Scholar 

  29. Koshibae, W. et al. Memory functions of magnetic skyrmions. Jpn. J. Appl. Phys. 54, 053001 (2015).

    Article  ADS  Google Scholar 

  30. Romming, N., Kubetzka, A., Hanneken, C., Bergmann, K. V. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Nagaosa, W. Koshibae and A. Rosch for fruitful discussions. This work was partially supported by JSPS KAKENHI (Grant Nos. 25220709, 24224009, 15H05459).

Author information

Authors and Affiliations

Authors

Contributions

H.O. conducted all experiments and analysed the data. A.K. grew the single crystals used for the study. F.K. planned and supervised the project. H.O. and F.K. wrote the letter. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Fumitaka Kagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oike, H., Kikkawa, A., Kanazawa, N. et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nature Phys 12, 62–66 (2016). https://doi.org/10.1038/nphys3506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing