Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

Abstract

Ultrafast electron thermalization—the process leading to carrier multiplication via impact ionization1,2, and hot-carrier luminescence3,4—occurs when optically excited electrons in a material undergo rapid electron–electron scattering3,5,6,7 to redistribute excess energy and reach electronic thermal equilibrium. Owing to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques8,9,10,11,12,13,14. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene–boron nitride–graphene (G–BN–G) vdW heterostructure15,16,17, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a means to probe and directly modulate electron energy transport in nanoscale materials, represent a step towards designing and implementing optoelectronic and energy-harvesting devices with tailored microscopic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interlayer photocurrent of a G–BN–G device.
Figure 2: Two different regimes of interlayer photocurrent in a G–BN–G device.
Figure 3: Two-pulse correlation of interlayer photocurrent in a G–BN–G device.
Figure 4: Experimental signatures of direct Fowler–Nordheim carrier tunnelling.

Similar content being viewed by others

References

  1. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article  ADS  Google Scholar 

  2. Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    Article  ADS  Google Scholar 

  3. Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  ADS  Google Scholar 

  4. Kim, Y. D. et al. Bright visible light emission from graphene. Nature Nanotech. 10, 676–681 (2015).

    Article  ADS  Google Scholar 

  5. Wang, Y. et al. Measurement of intrinsic Dirac fermion cooling on the surface of the topological insulator Bi2Se3 using time-resolved and angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 109, 127401 (2012).

    Article  ADS  Google Scholar 

  6. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    Article  ADS  Google Scholar 

  7. George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    Article  ADS  Google Scholar 

  8. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article  ADS  Google Scholar 

  9. Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nature Mater. 12, 1119–1124 (2013).

    Article  ADS  Google Scholar 

  10. Dawlaty, J. M., Shivaraman, S., Chandrashekhar, M., Rana, F. & Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 92, 042116 (2008).

    Article  ADS  Google Scholar 

  11. Li, T. et al. Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. Phys. Rev. Lett. 108, 167401 (2012).

    Article  ADS  Google Scholar 

  12. Ryzhii, V. et al. Terahertz photomixing using plasma resonances in double-graphene layer structures. J. Appl. Phys. 113, 174506 (2013).

    Article  ADS  Google Scholar 

  13. Satou, A., Otsuji, T. & Ryzhii, V. Theoretical study of population inversion in graphene under pulse excitation. Jpn. J. Appl. Phys. 50, 070116 (2011).

    Article  ADS  Google Scholar 

  14. Boubanga-Tombet, S. et al. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Phys. Rev. B 85, 035443 (2012).

    Article  ADS  Google Scholar 

  15. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  ADS  Google Scholar 

  16. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  ADS  Google Scholar 

  17. Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nature Nanotech. 9, 808–813 (2014).

    Article  ADS  Google Scholar 

  18. Kittel, C., McEuen, P. & McEuen, P. Introduction to Solid State Physics Vol. 8 (Wiley, 1976).

    Google Scholar 

  19. Lisowski, M. et al. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru (001). Appl. Phys. A 78, 165–176 (2004).

    Article  ADS  Google Scholar 

  20. Fann, W., Storz, R., Tom, H. & Bokor, J. Electron thermalization in gold. Phys. Rev. B 46, 13592–13595 (1992).

    Article  ADS  Google Scholar 

  21. Neto, A. C., Guinea, F., Peres, N., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  22. Tielrooij, K. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

    Article  ADS  Google Scholar 

  23. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2013).

    Article  ADS  Google Scholar 

  24. Song, J. C., Tielrooij, K. J., Koppens, F. H. & Levitov, L. S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).

    Article  ADS  Google Scholar 

  25. Tielrooij, K.-J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nature Nanotech. 10, 437–443 (2015).

    Article  ADS  Google Scholar 

  26. Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  27. Ma, Q. et al. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014).

    Article  ADS  Google Scholar 

  28. Song, J. C., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  ADS  Google Scholar 

  29. Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. 9, 103–108 (2013).

    Article  ADS  Google Scholar 

  30. Geim, A. & Grigorieva, I. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  31. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotech. 9, 682–686 (2014).

    Article  ADS  Google Scholar 

  32. Dean, C. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  33. Kharche, N. & Nayak, S. K. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11, 5274–5278 (2011).

    Article  ADS  Google Scholar 

  34. Rodriguez-Nieva, J. F., Dresselhaus, M. S. & Levitov, L. S. Thermionic emission and negative dI/dV in photoactive graphene heterostructures. Nano Lett. 15, 1451–1456 (2015).

    Article  ADS  Google Scholar 

  35. Rodriguez-Nieva, J. F., Dresselhaus, M. S. & Song, J. C. Hot-carrier convection in graphene Schottky junctions Preprint at http://arXiv.org/abs/1504.07210 (2015).

  36. Schwede, J. W. et al. Photon-enhanced thermionic emission for solar concentrator systems. Nature Mater. 9, 762–767 (2010).

    Article  ADS  Google Scholar 

  37. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotech. 7, 114–118 (2012).

    Article  ADS  Google Scholar 

  38. Wolf, E. L. Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, 2011).

    Book  Google Scholar 

  39. Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics (Addison-Wesley, 2011).

    MATH  Google Scholar 

  40. Petersson, G. P., Svensson, C. M. & Maserjian, J. Resonance effects observed at the onset of Fowler–Nordheim tunneling in thin MOS structures. Solid-State Electron. 18, 449–451 (1975).

    Article  ADS  Google Scholar 

  41. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  Google Scholar 

  42. Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank V. Fatemi, L. Ju, L. Levitov, J. Rodriguez-Nieva, J. Sanchez-Yamagishi, E. J. Sie, J. C. W. Song and H. Steinberg for discussions. This work was supported by AFOSR Grant No. FA9550-11-1-0225 (measurement and data analysis, Q.M., T.I.A., N.L.N., N.G. and P.J.-H.) and the Packard Fellowship Program. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by the National Science Foundation (NSF) (Grant No. DMR-0819762) and of Harvard’s Center for Nanoscale Systems, supported by the NSF (Grant No. ECS-0335765). N.G. and C.H.L. have been supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4540 for the time-domain photocurrent measurements. F.H.L.K. acknowledges support by Fundacio Cellex Barcelona, the ERC Career integration grant (294056, GRANOP), the ERC starting grant (307806, CarbonLight), the Government of Catalonia through the SGR grant (2014-SGR-1535), the Mineco grants Ramón y Cajal (RYC-2012-12281) and Plan Nacional (FIS2013-47161-P), and support by the EC under the Graphene Flagship (contract no. CNECT-ICT-604391). W.F. and J.K. acknowledge the funding support by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319.

Author information

Authors and Affiliations

Authors

Contributions

N.M.G. and P.J.-H. conceived the experiment; Q.M., N.L.N. and M.M. fabricated the devices; N.L.N., N.M.G., Q.M. and M.M. carried out the spatial and spectral photocurrent measurements; T.I.A. and C.H.L. performed the time-domain photocurrent measurements under the supervision of N.G.; Q.M., T.I.A., N.L.N. and M.M. analysed the data under the supervision of N.M.G., C.H.L., A.F.Y., F.H.L.K. and P.J.-H.; W.F. and J.K. grew the CVD graphene; K.W. and T.T. synthesized the BN crystals; Q.M., T.I.A., C.H.L., N.L.N., N.M.G., F.H.L.K. and P.J.-H. co-wrote the paper with input from all other authors.

Corresponding authors

Correspondence to Nathaniel M. Gabor or Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Andersen, T., Nair, N. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nature Phys 12, 455–459 (2016). https://doi.org/10.1038/nphys3620

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing