Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ observations of waves in Venus’s polar lower thermosphere with Venus Express aerobraking

Abstract

Waves are ubiquitous phenomena found in oceans and atmospheres alike. From the earliest formal studies of waves in the Earth’s atmosphere to more recent studies on other planets, waves have been shown to play a key role in shaping atmospheric bulk structure, dynamics and variability1,2,3,4. Yet, waves are difficult to characterize as they ideally require in situ measurements of atmospheric properties that are difficult to obtain away from Earth. Thus, we have incomplete knowledge of atmospheric waves on planets other than our own, and we are thereby limited in our ability to understand and predict planetary atmospheres. Here we report the first ever in situ observations of atmospheric waves in Venus’s thermosphere (130–140 km) at high latitudes (71.5°–79.0°). These measurements were made by the Venus Express Atmospheric Drag Experiment (VExADE)5 during aerobraking from 24 June to 11 July 2014. As the spacecraft flew through Venus’s atmosphere, deceleration by atmospheric drag was sufficient to obtain from accelerometer readings a total of 18 vertical density profiles. We infer an average temperature of T = 114 ± 23 K and find horizontal wave-like density perturbations and mean temperatures being modulated at a quasi-5-day period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Densities in Venus’s upper atmosphere.
Figure 2: Density profiles in Venus’s lower thermosphere.
Figure 3: Atmospheric waves on Venus.
Figure 4: Maps of density waves in Venus’s lower thermosphere.

Similar content being viewed by others

References

  1. Forbes, J. M. in Atmospheres in the Solar System: Comparative Aeronomy Vol. 130 (eds Mendillo, M., Nagy, A. & Waite, J. H.) 171–190 (AGU, 2002).

    Book  Google Scholar 

  2. Forbes, J. M. & Konopliv, A. Oscillation of Venus’ upper atmosphere. Geophys. Res. Lett. 34, L08202 (2007).

    Article  ADS  Google Scholar 

  3. Yelle, R. V. & Miller, S. in Jupiter. The Planet, Satellites and Magnetosphere (eds Bagenal, F., Dowling, T. E. & McKinnon, W. B.) 185–218 (Cambridge Univ. Press, 2004).

    Google Scholar 

  4. Müller-Wodarg, I. C. F. & Yelle, R. V. Waves and horizontal structures in Titan’s thermosphere. J. Geophys. Res. 111, A12315 (2006).

    Article  ADS  Google Scholar 

  5. Müller-Wodarg, I. C. F., Forbes, J. M. & Keating, G. M. The thermosphere of Venus and its exploration by a Venus Express Accelerometer Experiment. Planet. Space Sci. 54, 1415–1424 (2006).

    Article  ADS  Google Scholar 

  6. Hedin, A. E., Niemann, H. B., Kasprzak, W. T. & Seiff, A. Global empirical model of the Venus thermosphere. J. Geophys. Res. 88, 73–83 (1983).

    Article  ADS  Google Scholar 

  7. Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M. & Spencer, N. W. Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus. J. Geophys. Res. 85, 7817–7827 (1980).

    Article  ADS  Google Scholar 

  8. Mahieux, A. et al. Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express. Planet. Space Sci. 113–114, 347–358 (2015).

    Article  ADS  Google Scholar 

  9. Piccialli, A. et al. Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planet. Space Sci. 113–114, 321–335 (2015).

    Article  ADS  Google Scholar 

  10. Rosenblatt, P. et al. First ever in-situ observations of Venus’ polar upper atmosphere density using the tracking data of the Venus Express Atmospheric Drag Experiment (VExADE). Icarus 217, 831–838 (2012).

    Article  ADS  Google Scholar 

  11. Del Genio, A. D. & Rossow, W. B. Planetary-scale wave and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990).

    Article  ADS  Google Scholar 

  12. Rossow, W. B., Del Genio, A. D. & Eichler, T. Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci. 47, 2053–2084 (1990).

    Article  ADS  Google Scholar 

  13. Apt, J., Brown, R. A. & Goody, R. The character of the thermal emission from Venus. J. Geophys. Res. 85, 7934–7940 (1980).

    Article  ADS  Google Scholar 

  14. Apt, J. & Leung, J. Thermal periodicities in the Venus atmosphere. Icarus 49, 423–427 (1982).

    Article  ADS  Google Scholar 

  15. Meyer, C. K. Gravity wave interactions with mesospheric planetary waves: a mechanism for penetration into the thermosphere-ionosphere system. J. Geophys. Res. 104, 28181–28196 (1999).

    Article  ADS  Google Scholar 

  16. Sornig, M. et al. Venus upper atmospheric dynamical structure from ground-based observations shortly before and after Venus inferior conjunction 2009. Icarus 225, 828–839 (2013).

    Article  ADS  Google Scholar 

  17. Clancy, R. T., Sandor, B. J. & Moriarty-Schieven, G. Circulation of the Venus upper mesosphere/lower thermosphere: Doppler wind measurements from 2001–2009 inferior conjunction, sub-millimeter CO absorption line observations. Icarus 217, 794–812 (2012).

    Article  ADS  Google Scholar 

  18. Bougher, S. W., Engel, S., Roble, R. G. & Foster, B. Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res. 104, 16591–16611 (1999).

    Article  ADS  Google Scholar 

  19. Kouyama, T., Imamura, T., Nakamura, M., Satoh, T. & Futaana, Y. Vertical propagation of planetary-scale waves in variable background winds in the upper cloud region of Venus. Icarus 248, 560–568 (2015).

    Article  ADS  Google Scholar 

  20. Schmuelling, F., Goldstein, J., Kostiuk, T., Hewagama, T. & Zipoy, D. High precision wind measurements in the upper Venus atmosphere. Bull. Am. Astron. Soc. 32, 1121 (2000).

    ADS  Google Scholar 

  21. Garcia, R. F., Drossart, P., Piccioni, G., López-Valverde, M. & Occhipinti, G. Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions. J. Geophys. Res. 114, E00B32 (2009).

    Article  ADS  Google Scholar 

  22. Bruinsma, S. L., Tamagnan, D. & Biancale, R. Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet. Space Sci. 52, 297–312 (2004).

    Article  ADS  Google Scholar 

  23. Bruinsma, S., Forbes, J. M., Nerem, S. & Zhang, X. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J. Geophys. Res. 111, A06303 (2006).

    Article  ADS  Google Scholar 

  24. Arona, L., Muller, M., Huguet, G., Tanco, I. & Keil, N. Venus Express solar arrays rotation experiments to measure atmospheric density. J. Aerosp. Eng. Sci. Appl. IV, 68–81 (2011).

    Google Scholar 

Download references

Acknowledgements

S.B. and J.-C.M. thank CNES/TOSCA for their support.

Author information

Authors and Affiliations

Authors

Contributions

I.C.F.M.-W. carried out the density wave extraction and analysis shown in Figs 24, and jointly with S.B. led the scientific interpretation of the results. S.B. and J.-C.M. performed the analysis of raw accelerometer readings using the GINS software to obtain density values. S.B. carried out the error analysis which led to Fig. 1. H.S. led the implementation of the VExADE experiment in the mission planning and made important scientific contributions in the interpretation of the data. I.C.F.M.-W. wrote the paper with significant contributions from all the authors in interpreting the results and editing of the manuscript.

Corresponding author

Correspondence to Ingo C. F. Müller-Wodarg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller-Wodarg, I., Bruinsma, S., Marty, JC. et al. In situ observations of waves in Venus’s polar lower thermosphere with Venus Express aerobraking. Nature Phys 12, 767–771 (2016). https://doi.org/10.1038/nphys3733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing