Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Light-induced electron localization in a quantum Hall system

Abstract

An insulating bulk state is a prerequisite for the protection of topological edge states1. In quantum Hall systems, the thermal excitation of delocalized electrons is the main route to breaking bulk insulation2. In equilibrium, the only way to achieve a clear bulk gap is to use a high-quality crystal under high magnetic field at low temperature. However, bulk conduction could also be suppressed in a system driven out of equilibrium such that localized states in the Landau levels are selectively occupied. Here we report a transient suppression of bulk conduction induced by terahertz wave excitation between the Landau levels in a GaAs quantum Hall system. Strikingly, the Hall resistivity almost reaches the quantized value at a temperature where the exact quantization is normally disrupted by thermal fluctuations. The electron localization is realized by the long-range potential fluctuations, which are a unique and inherent feature of quantum Hall systems. Our results demonstrate a new means of effecting dynamical control of topology by manipulating bulk conduction using light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum Hall effect at thermal equilibrium.
Figure 2: Terahertz-pump DC-probe experiments at 4.3 K.
Figure 3: Electron localization mechanism after terahertz excitation.
Figure 4: Transient recovery of the topological edge states.

Similar content being viewed by others

References

  1. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  ADS  Google Scholar 

  2. Yoshioka, D. The Quantum Hall Effect (Springer, 2010).

    MATH  Google Scholar 

  3. Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  4. Wakabayashi, J. & Kawaji, S. Hall effect in silicon MOS inversion layers under strong magnetic fields. J. Phys. Soc. Jpn 44, 1839–1849 (1978).

    Article  ADS  Google Scholar 

  5. Paalanen, M. A., Tsui, D. C. & Gossard, A. C. Quantized Hall effect at low temperatures. Phys. Rev. B 25, 5566(R)–5569(R) (1982).

    Article  ADS  Google Scholar 

  6. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  7. Xu, Y. et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 10, 956–963 (2014).

    Article  Google Scholar 

  8. Thouless, D. J., Kohmoto, M., Nightingale, P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  9. Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  10. Aoki, H. Localisation in the quantum Hall regime. Surf. Sci. 196, 107–119 (1988).

    Article  ADS  Google Scholar 

  11. Ibach, H. & Lüth, H. Solid-State Physics: An Introduction to Principles of Materials Science (Springer, 2009).

    Book  Google Scholar 

  12. Ando, T. Electron localization in a two-dimensional system in strong magnetic fields. II. long-range scatterers and response functions. J. Phys. Soc. Jpn 53, 3101–3111 (1984).

    Article  ADS  Google Scholar 

  13. Hashimoto, K. Quantum Hall transition in real space: from localized to extended states. Phys. Rev. Lett. 101, 256802 (2008).

    Article  ADS  Google Scholar 

  14. Wei, H. P., Chang, A. M., Tsui, D. C. & Razeghi, M. Temperature dependence of the quantized Hall effect. Phys. Rev. B 32, 7016(R)–7019(R) (1985).

    Article  ADS  Google Scholar 

  15. Maan, J. C., Englert, Th., Tsui, D. C. & Gossard, A. C. Observation of cyclotron resonance in the photoconductivity of two-dimensional electrons. Appl. Phys. Lett. 40, 609–610 (1982).

    Article  ADS  Google Scholar 

  16. Lavine, C. F., Wagner, R. J. & Tsui, D. C. Magnetic field dependence of the photoresponse of the electron inversion layer on (100) Si. Surf. Sci. 113, 112–117 (1982).

    Article  ADS  Google Scholar 

  17. Stein, D., Ebert, G., Klitzing, K. v. & Weimann, G. Photoconductivity on GaAs-AlxGa1−xAs heterostructures. Surf. Sci. 142, 406–411 (1984).

    Article  ADS  Google Scholar 

  18. Rikken, G. L. J. A. et al. Nanosecond far infra red magnetospectroscopy of GaAs/AlGaAs heterostructures. Surf. Sci. 196, 303–309 (1988).

    Article  ADS  Google Scholar 

  19. Dießel, E. et al. Novel far-infrared-photoconductor based on photon-induced interedge channel scattering. Appl. Phys. Lett. 58, 2231–2233 (1991).

    Article  ADS  Google Scholar 

  20. Kawano, Y., Hisanaga, Y., Takenouchi, H. & Komiyama, S. Highly sensitive and tunable detection of far-infrared radiation by quantum Hall devices. J. Appl. Phys. 89, 4037–4048 (2001).

    Article  ADS  Google Scholar 

  21. Kalugin, N. G. et al. Different components of far-infrared photoresponse of quantum Hall detectors. Appl. Phys. Lett. 81, 382–384 (2002).

    Article  ADS  Google Scholar 

  22. Maag, T. et al. Coherent cyclotron motion beyond Kohn’s theorem. Nat. Phys. 12, 119–123 (2016).

    Article  Google Scholar 

  23. Zhang, Q. et al. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Phys. Rev. Lett. 113, 047601 (2014).

    Article  ADS  Google Scholar 

  24. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  ADS  Google Scholar 

  25. Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013).

    Article  ADS  Google Scholar 

  26. Smirnov, K. et al. Energy relaxation of two-dimensional electrons in the quantum Hall effect regime. JETP Lett. 71, 31–34 (2000).

    Article  ADS  Google Scholar 

  27. Hirakawa, K. & Sakaki, H. Energy relaxation of two-dimensional electrons and the deformation potential constant in selectively doped AlGaAs/GaAs heterojunctions. Appl. Phys. Lett. 49, 889–891 (1986).

    Article  ADS  Google Scholar 

  28. Dietzel, F., Dietsche, W. & Ploog, K. Electron–phonon interaction in the quantum Hall effect regime. Phys. Rev. B 48, 4713–4720 (1993).

    Article  ADS  Google Scholar 

  29. Coleridge, P. T. Small-angle scattering in two-dimensional electron gases. Phys. Rev. B 44, 3793–3801 (1991).

    Article  ADS  Google Scholar 

  30. Komiyama, S., Takamasu, T., Hiyamizu, S. & Sasa, S. Breakdown of the quantum Hall effect due to electron heating. Solid State Commun. 54, 479–484 (1985).

    Article  ADS  Google Scholar 

  31. Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005–1011 (2016).

    Article  Google Scholar 

  32. Arikawa, T. et al. Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses. Phys. Rev. B 84, 241307(R) (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the KAKENHI (26247052) from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

T.A. and K.H. performed the measurements and analysed the data. Y.K. prepared the sample studied. T.A. and K.T. prepared the manuscript. All authors discussed the results and contributed to this manuscript.

Corresponding author

Correspondence to T. Arikawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arikawa, T., Hyodo, K., Kadoya, Y. et al. Light-induced electron localization in a quantum Hall system. Nature Phys 13, 688–692 (2017). https://doi.org/10.1038/nphys4078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing