Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy

Abstract

Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications1,2,3. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale4,5,6,7,8,9 and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions10,11, probing nanostructures via atomic or molecular manipulation12,13, and provide insights into the behaviour of nano-machines on substrates14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the 3D force detection method on a Ge(001)-c(4 × 2) surface using bimodal AFM.
Figure 2: Force component maps and force vector distributions above Ge(001) dimers.
Figure 3: Force component mappings and lateral force vector distributions on the Ge(001)-c(4 × 2) surface.
Figure 4: Simulated force component mapping on the Ge(001)-c(4 × 2) surface.

Similar content being viewed by others

References

  1. Wolfe, S. A., Jiwei, L., Stan, M. R., Chen, E. & Treger, D. M. The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98, 2155–2168 (2010).

    Article  Google Scholar 

  2. Burghard, M., Klauk, H. & Kern, K. Carbon-based field-effect transistors for nanoelectronics. Adv. Mater. 21, 2586–2600 (2009).

    Article  Google Scholar 

  3. Schmidt, R. et al. Probing the magnetic exchange forces of iron on the atomic scale. Nano Lett. 9, 200–204 (2009).

    Article  ADS  Google Scholar 

  4. Rodriguez, T. R. & Garcia, R. Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl. Phys. Lett. 84, 449–451 (2004).

    Article  ADS  Google Scholar 

  5. Garcia, R. & Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. Nanotech. 7, 217–226 (2012).

    Article  ADS  Google Scholar 

  6. Solares, S. D. & Chawla, G. Triple-frequency intermittent contact atomic force microscopy characterization: simultaneous topographical, phase, and frequency shift contrast in ambient air. J. Appl. Phys. 108, 054901 (2010).

    Article  ADS  Google Scholar 

  7. Naitoh, Y., Ma, Z. M., Li, Y. J., Kageshima, M. & Sugawara, Y. Simultaneously observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopy. J. Vac. Sci. Technol. B 28, 1210–1214 (2010).

    Article  Google Scholar 

  8. Kawai, S. et al. Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. Phys. Rev. Lett. 103, 220801 (2009).

    Article  ADS  Google Scholar 

  9. Kawai, S. et al. Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements. Phys. Rev. B 81, 085420 (2010).

    Article  ADS  Google Scholar 

  10. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    Article  ADS  Google Scholar 

  11. Felts, J. R. et al. Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015).

    Article  ADS  Google Scholar 

  12. Custance, O., Perez, R. & Morita, S. Atomic force microscopy as a tool for atom manipulation. Nat. Nanotech. 9, 803–810 (2009).

    Article  ADS  Google Scholar 

  13. Lee, G. et al. Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups. Nanoscale Res. Lett. 7, 608–618 (2012).

    Article  ADS  Google Scholar 

  14. Mo, Y., Turner, K. T. & Szlufarska, I. Friction laws at the nanoscale. Nature 457, 1116–1119 (2009).

    Article  ADS  Google Scholar 

  15. Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).

    Article  ADS  Google Scholar 

  16. Morita, S., Wiesendanger, R. & Meyer, E. Noncontact Atomic Force Microscopy (Springer, 2002).

    Book  Google Scholar 

  17. Arima, E. et al. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance. Nanotechnology 26, 125701 (2015).

    Article  ADS  Google Scholar 

  18. Kou, L. et al. Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback. Nanotechnology 26, 195701 (2015).

    Article  ADS  Google Scholar 

  19. Naitoh, Y., Kamijo, T., Li, Y. J. & Sugawara, Y. Quantification of atomic-scale elasticity on Ge(001)-c(4 × 2) surfaces via noncontact atomic force microscopy with a tungsten coated tip. Phys. Rev. Lett. 109, 215501 (2012).

    Article  ADS  Google Scholar 

  20. Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    Article  ADS  Google Scholar 

  21. Sugimoto, Y., Namikawa, T., Miki, K., Abe, M. & Morita, S. Vertical and lateral force mapping on the Si(111)-(7 × 7) surface by dynamic force microscopy. Phys. Rev. B 77, 195424 (2008).

    Article  ADS  Google Scholar 

  22. Ruschmeier, K., Schirmeisen, A. & Hoffmann, R. Atomic-scale force-vector fields. Phys. Rev. Lett. 101, 156102 (2008).

    Article  ADS  Google Scholar 

  23. Albers, B. J. et al. Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat. Nanotech. 4, 307–310 (2009).

    Article  ADS  Google Scholar 

  24. Weymouth, A. J., Hofmann, T. & Giessibl, F. J. Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014).

    Article  ADS  Google Scholar 

  25. Kawai, S., Sasaki, N. & Kawakatsu, H. Direct mapping of the lateral force gradient on Si(111)-7 × 7. Phys. Rev. B 79, 195412 (2009).

    Article  ADS  Google Scholar 

  26. Weymouth, A. J. et al. Atomic structure affects the directional dependence of friction. Phys. Rev. Lett. 111, 126103 (2013).

    Article  ADS  Google Scholar 

  27. Tütüncü, H. M., Jenkins, S. J. & Srivastava, G. P. Atomic geometry, electronic structure, and vibrational properties of the Ge(001)(2 × 1) surfaces. Phys. Rev. B 57, 4649–4655 (1998).

    Article  ADS  Google Scholar 

  28. See, for instance Bamidele, J. et al. Chemical tip fingerprinting in scanning probe microscopy of an oxidized Cu(110) surface. Phys. Rev. B 86, 155422 (2012).

    Article  ADS  Google Scholar 

  29. Tomatsu, K. et al. Local vibrational excitation through extended electronic states at a germanium surface. Phys. Rev. Lett. 103, 266102 (2009).

    Article  ADS  Google Scholar 

  30. Yoshida, K., Nishi, R. & Mori, H. Design of High-Speed Tomography with the 3MV Ultrahigh Voltage Electron Microscope EMC 2008 14th European Microscopy Congress Vol. 1, 341 (2008).

  31. Higuchi, S. et al. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function. Rev. Sci. Instrum. 81, 073706 (2010).

    Article  ADS  Google Scholar 

  32. Kinoshita, Y., Naitoh, Y., Li, Y. J. & Sugawara, Y. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition. Rev. Sci. Instrum. 82, 113707 (2011).

    Article  ADS  Google Scholar 

  33. Suehira, N., Tomiyoshi, Y., Sugawara, Y. & Morita, S. Low-temperature noncontact atomic-force microscope with quick sample and cantilever exchange mechanism. Rev. Sci. Instrum. 72, 2971–2976 (2001).

    Article  ADS  Google Scholar 

  34. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  36. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  37. Heyd, J., Scuseria, G. E. & Matthias Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Kantorovich, King’s College London, and T. Glatzel, University of Basel, for their valuable contributions. This work was supported by a Grant-in-Aid for Scientific Research (B) (Grant No. 26286007) from JSPS, Grant-in-Aid for Exploratory Research (Grant No. 15K13275) from JSPS, APVV-0759-15, VEGA 2/0162/15, and by V4-Japan Joint Research Program on Advanced Materials (NaMSeN) projects. We also gratefully acknowledge use of the Hitachi SR16000/M1 supercomputer system at CCMS/IMR, Tohoku University, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.N. and Y.S. conceived 3D force vector mapping using bimodal AFM. Y.N. performed the AFM experiments and analysed the data. R.T., J.B. and I.S. performed DFT calculations. Y.N. and I.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yoshitaka Naitoh or Ivan Štich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naitoh, Y., Turanský, R., Brndiar, J. et al. Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy. Nature Phys 13, 663–667 (2017). https://doi.org/10.1038/nphys4083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing