Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of the Nernst signal generated by fluctuating Cooper pairs

Abstract

Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive1 and lead to a number of well-established phenomena, such as paraconductivity2: an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to theory3, these pairs generate a transverse thermoelectric (Nernst) signal. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be rigorously tested. Here, we present measurements of amorphous superconducting films of Nb0.15Si0.85. In this dirty superconductor, the lifetime of Cooper pairs exceeds the elastic scattering lifetime of quasiparticles in a wide temperature range above Tc and, consequently, their Nernst response dominates that generated by the normal electrons. We resolved a Nernst signal, which persists deep inside the normal state. Its amplitude is in excellent agreement with the theoretical prediction. This result provides an unambiguous case for a Nernst effect produced by short-lived Cooper pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nernst signal from sample 1.
Figure 2: Nernst signal from sample 2.
Figure 3: Temperature dependence of the coherence length.

Similar content being viewed by others

References

  1. Larkin, A. & Varlamov, A. Theory of Fluctuations in Superconductors (Clarendon, Oxford, 2005).

    Book  Google Scholar 

  2. Glover, R. E. Ideal resistive transition of a superconductor. Phys. Lett. A 25, 542–544 (1967).

    Article  ADS  Google Scholar 

  3. Ussishkin, I., Sondhi, S. L. & Huse, D. A. Gaussian superconducting fluctuations, thermal transport, and the Nernst effect. Phys. Rev. Lett. 89, 287001 (2002).

    Article  ADS  Google Scholar 

  4. Xu, Z. A. et al. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4 . Nature 406, 486–488 (2000).

    Article  ADS  Google Scholar 

  5. Wang, Y. et al. Onset of the vortex-like Nernst signal above Tc in La2−xSrxCuO4 and Bi2Sr2−yLayCuO6 . Phys. Rev. B 64, 224519 (2001).

    Article  ADS  Google Scholar 

  6. Wang, Y. et al. Dependence of upper critical field and pairing strength on doping in cuprates. Science 299, 86–89 (2003).

    Article  ADS  Google Scholar 

  7. Capan, C. et al. Entropy of vortex cores near the superconductor-insulator transition in an underdoped cuprate. Phys. Rev. Lett. 88, 056601 (2002).

    Article  ADS  Google Scholar 

  8. Wen, H. H. et al. Two-dimensional feature of the Nernst effect in normal state of underdoped La2−xSrxCuO4 single crystals. Europhys. Lett. 63, 583–589 (2003).

    Article  ADS  Google Scholar 

  9. Rullier-Albenque, F. et al. Nernst effect and disorder in the normal state of high-Tc cuprates. Phys. Rev. Lett. 96, 067002 (2006).

    Article  ADS  Google Scholar 

  10. Wang, Y., Li, L. & Ong, N. P. Nernst effect in high-Tc superconductors. Phys. Rev. B 73, 024510 (2006).

    Article  ADS  Google Scholar 

  11. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  ADS  Google Scholar 

  12. Dumoulin, L., Bergé, L., Lesueur, J., Bernas, H. & Chapellier, M. Nb-Si thin films as thermometers for low temperature bolometers. J. Low Temp. Phys. 93, 301–306 (1993).

    Article  ADS  Google Scholar 

  13. Marnieros, S., Bergé, L., Juillard, A. & Dumoulin, L. Dynamical properties near the metal-insulator transition: evidence for electron-assisted variable range hopping. Phys. Rev. Lett. 84, 2469–2472 (2000).

    Article  ADS  Google Scholar 

  14. Lee, H.-L., Carini, J. P., Baxter, D. V., Henderson, W. & Grüner, G. Quantum-critical conductivity scaling for a metal-insulator transition. Science 287, 633–636 (2000).

    Article  ADS  Google Scholar 

  15. Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (1998).

    Article  Google Scholar 

  16. Aubin, H. et al. Magnetic-field-induced quantum superconductor-insulator transition in Nb0.15Si0.85 . Phys. Rev. B 73, 094521 (2006).

    Article  ADS  Google Scholar 

  17. Bel, R., Behnia, K. & Burger, H. Ambipolar Nernst effect in NbSe2 . Phys. Rev. Lett. 91, 066602 (2003).

    Article  ADS  Google Scholar 

  18. Gilchrist, J. le G. & Vallier, J.-C. Hall effect in superconducting niobium and alloys. Phys. Rev. B 3, 3878–3886 (1971).

    Article  ADS  Google Scholar 

  19. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  20. Jaeger, H. M., Haviland, D. B., Orr, B. G. & Goldman, A. M. Onset of superconductivity in ultrathin granular metal-films. Phys. Rev. B 40, 182–196 (1989).

    Article  ADS  Google Scholar 

  21. Maekawa, S., Ebisawa, H. & Fukuyama, H. Upper critical field in two-dimensional superconductors. J. Phys. Soc. Jpn 52, 1352–1360 (1983).

    Article  ADS  Google Scholar 

  22. Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962).

    Article  ADS  Google Scholar 

  23. Bel, R. et al. Giant Nernst effect in CeCoIn5 . Phys. Rev. Lett. 92, 217002 (2004).

    Article  ADS  Google Scholar 

  24. Leupold, H. A. & Boorse, H. A. Superconducting and normal specific heats of a single crystal of niobium. Phys. Rev. 134, A1322–A1328 (1964).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Agence Nationale de la Recherche. We are grateful to C. Capan, A. Kapitulnik, M. Grilli, D. Huse, S. Kivelson, S. Sondhi and I. Ussishkin for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.A.M.-K., L.B. and L.D. prepared the samples. A.P. (assisted by H.A. and K.B.) carried out the measurements. H.A. and K.B. (discussing with A.P. and J.L.) interpreted and analysed the data. K.B. wrote the text.

Corresponding authors

Correspondence to H. Aubin or K. Behnia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourret, A., Aubin, H., Lesueur, J. et al. Observation of the Nernst signal generated by fluctuating Cooper pairs. Nature Phys 2, 683–686 (2006). https://doi.org/10.1038/nphys413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing