Abstract
Quantum teleportation1, a way to transfer the state of a quantum system from one location to another, is central to quantum communication2 and plays an important role in a number of quantum computation protocols3,4,5. Previous experimental demonstrations have been implemented with single photonic6,7,8,9,10,11 or ionic qubits12,13. However, teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation2,3,4,5. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system14. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols3,15,16,17,18.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
Grover, L. K. Quantum telecomputation. Preprint at <http://arxiv.org/abs/quant-ph/9704012> (1997).
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).
Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).
Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).
Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).
Ursin, R. et al. Quantum teleportation across the Danube. Nature 430, 849 (2004).
Zhao, Z. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).
Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).
Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).
Hayashi, A., Hashimoto, T. & Horibe, M. Reexamination of optimal quantum state estimation of pure states. Phys. Rev. A 72, 032325 (2005).
Jacobs, B. C., Pittman, T. B. & Franson, J. D. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).
Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).
Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).
Lee, J. & Kim, M. S. Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236–4239 (2000).
Rigolin, G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005).
Cleve, R., Gottesman, D. & Lo, H.-K. How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999).
Kwiat, P. G. et al. New high intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Pan, J.-W., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001).
Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed source. Ann. NY Acad. Sci. 755, 91–102 (1995).
Pan, J.-W. & Zeilinger, A. Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998).
Zou, X.-B. & Mathis, W. Generating a four-photon polarization-entangled cluster state. Phys. Rev. A 71, 032308 (2005).
Hein, M., Eisert, J. & Briegel, J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).
Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).
Acknowledgements
This work was supported by the Marie Curie Excellence Grant of the EU and the Alexander von Humboldt Foundation. This work was also supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Zhang, Q., Goebel, A., Wagenknecht, C. et al. Experimental quantum teleportation of a two-qubit composite system. Nature Phys 2, 678–682 (2006). https://doi.org/10.1038/nphys417
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys417
This article is cited by
-
Hertz-rate metropolitan quantum teleportation
Light: Science & Applications (2023)
-
Symmetric bidirectional quantum teleportation using a six-qubit cluster state as a quantum channel
Pramana (2023)
-
Optimal tripartite quantum teleportation protocol through noisy channels
Quantum Information Processing (2023)
-
Quantum teleportation based on non-maximally entangled graph states
Quantum Information Processing (2023)
-
Bidirectional Controlled Quantum Teleportation of Arbitrary Two-qubit States Using Ten-qubit Entangled Channel in Noisy Environment
International Journal of Theoretical Physics (2022)


