Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Initialization and read-out of spins in coupled core–shell quantum dots

Abstract

In the field of quantum information science, semiconductor quantum dots (QDs) are of particular interest for their ability to confine a single electron for use as a qubit1,2. However, to realize the potential offered by quantum information processing, it is necessary to couple two or more qubits. In contrast to coupling individual QDs, we demonstrate the integration of two coupled electronic states within a single QD heterostructure. These chemically synthesized nanocrystals, known as quantum-dot quantum wells (QDQWs)3,4,5,6,7, comprise concentric layers of different semiconducting materials. We investigate carrier and spin dynamics in these structures using transient absorption and time-resolved Faraday rotation measurements. By tuning the excitation and probe energies, we find that we can selectively initialize and read out spins in different coupled states within the QDQW. These results open a pathway for engineering coupled qubits within a single nanostructure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample characterization and selective pumping of the core and shell.
Figure 4: Comparison with k · p theory and Hubbard model.
Figure 2: Spin precession in core–shell QDQWs.
Figure 3: Spectrally resolved spin dynamics in the core and shell.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

  2. Awschalom, D. D., Loss, D. & Samarth, N. (eds) in Semiconductor Spintronics and Quantum Computation (Springer, Heidelberg, 2002).

  3. Eychmüller, A., Mews, A. & Weller, H. A quantum dot quantum well: CdS/HgS/CdS. Chem. Phys. Lett. 208, 59–62 (1993).

    Article  ADS  Google Scholar 

  4. Mews, A., Eychmüller, A., Giersig, M., Schoos, D. & Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98, 934–941 (1994).

    Article  Google Scholar 

  5. Battaglia, D., Li, J. J., Wang, Y. & Peng, X. Colloidal two-dimensional systems: CdSe quantum shells and wells. Angew. Chem. Int. Edn 42, 5035–5039 (2003).

    Article  Google Scholar 

  6. Lifshitz, E. et al. Optically detected magnetic resonance study of CdS/HgS/CdS quantum dot quantum wells. J. Phys. Chem. B 103, 6870–6875 (1999).

    Article  Google Scholar 

  7. Battaglia, D., Blackman, B. & Peng, X. Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. J. Am. Chem. Soc. 127, 10889–10897 (2005).

    Article  Google Scholar 

  8. Meier, F. & Awschalom, D. D. Faraday rotation spectroscopy of quantum-dot quantum wells. Phys. Rev. B 71, 205315 (2005).

    Article  ADS  Google Scholar 

  9. Berezovsky, J. et al. Spin dynamics and level structure of quantum-dot quantum wells. Phys. Rev. B 71, 081309R (2005).

    Article  ADS  Google Scholar 

  10. Xia, J.-B. Electronic structures of zero-dimensional quantum wells. Phys. Rev. B 40, 8500 (1989).

    Article  ADS  Google Scholar 

  11. Efros, Al. L. Luminescence polarization of CdSe microcrystals. Phys. Rev. B 46, 7448 (1992).

    Article  ADS  Google Scholar 

  12. Klimov, V. I., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 60, 13740–13749 (1999).

    Article  ADS  Google Scholar 

  13. Braun, M., Burda, C., Mohamed, M. & El-Sayed, M. Femtosecond time-resolved electron-hole dynamics and radiative transitions in the double-layer quantum well of the CdS/(HgS)2/CdS quantum-dot-quantum-well nanoparticle. Phys. Rev. B 64, 035317 (2001).

    Article  ADS  Google Scholar 

  14. Crooker, S. A., Barrick, T., Hollingsworth, J. A. & Klimov, V. I. Multiple temperature regimes of the radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793–2795 (2003).

    Article  ADS  Google Scholar 

  15. Gupta, J. A., Awschalom, D. D., Efros, Al. L. & Rodina, A. V. Spin dynamics in semiconductor nanocrystals. Phys. Rev. B 66, 125307 (2002).

    Article  ADS  Google Scholar 

  16. Stern, N. P. et al. Spin dynamics in electrochemically charged CdSe quantum dots. Phys. Rev. B 72, 161303 (2005).

    Article  ADS  Google Scholar 

  17. Schrier, J. & Wang, L. Electronic structure of nanocrystal quantum-dot quantum wells. Phys. Rev. B 73, 245332 (2006).

    Article  ADS  Google Scholar 

  18. Kiselev, A. A., Ivchenko, E. L. & Rössler, U. Electron g-factor in one- and zero-dimensional semiconductor nanostructures. Phys. Rev. B 58, 16353–16359 (1998).

    Article  ADS  Google Scholar 

  19. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  Google Scholar 

  20. Qu, L., Peng, A. & Peng, X. Alternative routes to high quality CdSe nanocrystals. Nano Lett. 1, 333–337 (2001).

    Article  ADS  Google Scholar 

  21. Li, J. J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from NSF, DMEA and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezovsky, J., Gywat, O., Meier, F. et al. Initialization and read-out of spins in coupled core–shell quantum dots. Nature Phys 2, 831–834 (2006). https://doi.org/10.1038/nphys458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing