Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Femtosecond diffractive imaging with a soft-X-ray free-electron laser

Abstract

Theory predicts1,2,3,4 that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4×1013 W cm−2 pulse, containing 1012 photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling5,6,7,8,9, shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the experimental apparatus.
Figure 2: Flash X-ray coherent diffraction patterns.
Figure 3: The reconstructed X-ray image shows no evidence of the damage caused by the pulse.
Figure 4: The image reconstructed to the diffraction limit.

Similar content being viewed by others

References

  1. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  ADS  Google Scholar 

  2. Jurek, Z., Faigel, G. & Tegze, M. Dynamics in a cluster under the influence of intense femtosecond hard x-ray pulses. Eur. Phys. J. D 29, 217–229 (2004).

    Article  ADS  Google Scholar 

  3. Hau-Riege, S. P., London, R. A. & Szöke, A. Dynamics of X-ray irradiated biological molecules. Phys. Rev. E 69, 051906 (2004).

    Article  ADS  Google Scholar 

  4. Bergh, M., Timneanu, N. O. & van der Spoel, D. Model for the dynamics of a water cluster in an x-ray free electron laser beam. Phys. Rev. E 70, 051904 (2004).

    Article  ADS  Google Scholar 

  5. Fienup, J. R. Phase retrieval algorithms—a comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  ADS  Google Scholar 

  6. Sayre, D., Chapman, H. N. & Miao, J. On the extendibility of x-ray crystallography to noncrystals. Acta Crystallogr. A 54, 232–239 (1998).

    Article  Google Scholar 

  7. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  ADS  Google Scholar 

  8. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Article  ADS  Google Scholar 

  9. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).

    Article  ADS  Google Scholar 

  10. Huldt, G., Szöke, A. & Hajdu, J. Diffraction imaging of single particles and biomolecules. J. Struct. Biol. 144, 219–227 (2003).

    Article  Google Scholar 

  11. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Quart. Rev. Biophys. 28, 171–193 (1995).

    Article  Google Scholar 

  12. Howells, M. R. et al. An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J. Electron. Spectrosc. Relat. Phenom. (in the press); Preprint at <http://arxiv.org/abs/physics/0502059> (2005).

  13. Persson, P., Lunell, S., Szoke, A., Ziaja, B. & Hajdu, J. Shake-up and shake-off excitations with associated electron losses in X-ray studies of proteins. Protein Sci. 10, 2480–2484 (2001).

    Article  Google Scholar 

  14. Timneanu, N., Caleman, C., Hajdu, J. & van der Spoel, D. Auger electron cascades in water and ice. Chem. Phys. 29, 277–283 (2004).

    Article  Google Scholar 

  15. Ziaja, B., London, R. A. & Hajdu, J. Unified model of secondary electron cascades in diamond. J. Appl. Phys. 97, 064905 (2005).

    Article  ADS  Google Scholar 

  16. Solem, J. C. & Baldwin, G. C. Microholography of living organisms. Science 218, 229–235 (1982).

    Article  ADS  Google Scholar 

  17. Ayvazyan, V. et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297–303 (2006).

    Article  ADS  Google Scholar 

  18. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. The Physics of Free-Electron Lasers (Springer, Berlin, 2000).

    Book  Google Scholar 

  19. Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969).

    Article  ADS  Google Scholar 

  20. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    Article  ADS  Google Scholar 

  21. He, H. et al. Experimental lensless soft-x-ray imaging using iterative algorithms: Phasing diffuse scattering. Acta Crystallogr. A 59, 143–152 (2003).

    Article  Google Scholar 

  22. Miao, J. et al. Imaging whole Escherichia coli bacteria by using single particle x-ray diffraction. Proc. Natl Acad. Sci. USA 100, 110–112 (2003).

    Article  ADS  Google Scholar 

  23. Shapiro, D. et al. Biological imaging by soft x-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 102, 15343–15346 (2005).

    Article  ADS  Google Scholar 

  24. Henke, B. L, Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV,Z=1–92. At. Data. Nucl. Data. Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  25. More, R. M., Warren, K. H., Young, D. A. & Zimmerman, G. B. A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059–3078 (1988).

    Article  ADS  Google Scholar 

  26. Underwood, J. H. & Gullikson, E. M. High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50–1300 eV energy region. J. Electron. Spectrosc. Relat. Phenom. 92, 265–272 (1998).

    Article  Google Scholar 

  27. Goodman, J. W. Statistical Optics (Wiley, New York, 1985).

    Google Scholar 

Download references

Acknowledgements

We owe special thanks to the scientific and technical staff of FLASH at The Deutsches Elektronen-Synchrotron, Hamburg, in particular to J. Feldhaus, R. L. Johnson, U. Hahn, T. Nuñez, K. Tiedtke, S. Toleikis, E. L. Saldin, E. A. Schneidmiller and M. V. Yurkov. We also thank R. Falcone, M. Ahmed and T. Allison for discussions, J. Alameda, E. Gullikson, F. Dollar, T. McCarville, F. Weber, J. Crawford, C. Stockton, W. Moberlychan, M. Haro, A. Minor, H. Thomas and E. Eremina for technical help with these experiments. The following agencies supported this work: the US Department of Energy (DOE) under contract to the University of California, Lawrence Livermore National Laboratory (the project was funded by the Laboratory Directed Research and Development Program at LLNL); The National Science Foundation Center for Biophotonics, University of California, Davis; The National Center for Electron Microscopy and the Advanced Light Source, Lawrence Berkeley Laboratory; Natural Sciences and Engineering Research Council of Canada (NSERC Postdoctoral Fellowship to M.J.B.); Sven and Lilly Lawskis Foundation (doctoral fellowship to M.M.S.); the US Department of Energy Office of Science to the Stanford Linear Accelerator Center; the European Union (TUIXS); The Swedish Research Council; The Swedish Foundation for International Cooperation in Research and Higher Education and The Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations

Authors

Contributions

H.N.C. and J.H. conceived the experiment and H.N.C., A.B., M.J.B., M.F., S.P.H.-R., S.M., B.W.W., S. Bajt, W.H.B., R.A.L., R.W.L., A.S., K.O.H., C.B., T.M. and J.H. contributed to its design. S. Bajt, E.S. and H.N.C. designed the multilayer optics. S.B. designed and fabricated the samples and S.B. and M.J.B. characterized them. E.P., M.K., R.T., S.D., T.T. and J.R.S. carried out interfacing and optimization of the experiment with FLASH. H.N.C., A.B., M.J.B., S.B., M.F., S.M., B.W.W., W.H.B., E.P., M.K., R.T., S.D., T.T., T.M., C.B., M.H., D.A.S., F.B., M.B., C.C., G.H., M.M.S. and J.H. carried out the experiment and H.N.C., A.B., M.J.B., S.B., S.P.H.-R., S.M., D.v.d.S., F.B., M.B., C.C., G.H., M.M.S., F.R.N.C.M., A.S., N.T. and J.H. carried out data analysis and interpretation. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Henry N. Chapman or Janos Hajdu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, H., Barty, A., Bogan, M. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys 2, 839–843 (2006). https://doi.org/10.1038/nphys461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing