Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires

Abstract

The dynamics of the motion of domain walls (DWs) in magnetic materials has been extensively explored theoretically1,2,3. Depending on the driving force, conventionally magnetic field and, more recently, spin-polarized current4,5,6,7,8,9,10,11,12,13, the propagation of DWs changes from a simple translation to more complex precessional modes14. Experimentally, indirect evidence of this transition is found from a sudden drop in the wall’s velocity15,16,17,18, but direct observation of the precessional modes is lacking. Here we show experimentally, using a combination of quasi-static and real-time measurement techniques, that DWs propagate along permalloy nanowires with a periodic variation in the chirality of the walls. The frequency of this oscillation is consistent with a precession of the propagating DW, increasing linearly with field according to the Larmor precession frequency. Current in the nanowire, large enough to significantly influence the DW velocity18,19, has little effect on the precession frequency but can be used to adjust the phase of the wall’s precession. The highly coherent and reproducible motion of the DW revealed by our studies demonstrates that the DW is a well-defined macroscopic object whose phase is inextricably interlinked to the distance travelled by the DW.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and structure of injected DWs at a notched pinning site.
Figure 2: Probability of trapping DWs with different structures at a pinning site: field dependence.
Figure 3: Probability of trapping transverse DWs with different chiralities at a pinning site: voltage pulse dependence.
Figure 4: Time-resolved resistance measurements of a propagating DW along a permalloy nanowire.
Figure 5: Micromagnetic simulations of the field-driven motion of a DW and comparison of calculated and measured frequency of periodic DW motion.

Similar content being viewed by others

References

  1. Malozemoff, A. P. & Slonczewski, J. C. Magnetic Domain Walls in Bubble Material (Academic, New York, 1979).

    Google Scholar 

  2. Bar’yakhtar, V. G., Chetkin, M. V., Ivanov, B. A. & Gadetskii, S. N. Dynamics of Topological Magnetic Solitons (Springer, Berlin, 1994).

    Book  Google Scholar 

  3. Berger, L. Analysis of measured transport properties of domain walls in magnetic nanowires and films. Phys. Rev. B 73, 014407 (2006).

    Article  ADS  Google Scholar 

  4. Berger, L. Exchange interaction between ferromagnetic domain-wall and electric-current in very thin metallic-films. J. Appl. Phys. 55, 1954–1956 (1984).

    Article  ADS  Google Scholar 

  5. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  ADS  Google Scholar 

  6. Klaui, M. et al. Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys. Rev. Lett. 94, 106601 (2005).

    Article  ADS  Google Scholar 

  7. Vernier, N., Allwood, D. A., Atkinson, D., Cooke, M. D. & Cowburn, R. P. Domain wall propagation in magnetic nanowires by spin-polarized current injection. Europhys. Lett. 65, 526–532 (2004).

    Article  ADS  Google Scholar 

  8. Klaui, M. et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 95, 026601 (2005).

    Article  ADS  Google Scholar 

  9. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Article  ADS  Google Scholar 

  10. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  ADS  Google Scholar 

  11. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  ADS  Google Scholar 

  12. Barnes, S. E. & Maekawa, S. Current-spin coupling for ferromagnetic domain walls in fine wires. Phys. Rev. Lett. 95, 107204 (2005).

    Article  ADS  Google Scholar 

  13. Thomas, L. et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443, 197–200 (2006).

    Article  ADS  Google Scholar 

  14. Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nature Mater. 2, 521–523 (2003).

    Article  ADS  Google Scholar 

  15. Zimmermann, L. & Miltat, J. Instability of bubble radial motion associated with chirality changes. J. Magn. Magn. Mater. 94, 207–214 (1991).

    Article  ADS  Google Scholar 

  16. Honda, S., Fukuda, N. & Kusuda, T. Mechanisms of bubble-wall radial motion deduced from chirality switching and collapse experiments using fast-rise bias field pulse. J. Appl. Phys. 52, 5756–5762 (1981).

    Article  ADS  Google Scholar 

  17. Beach, G. S. D., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. L. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nature Mater. 4, 741–744 (2005).

    Article  ADS  Google Scholar 

  18. Hayashi, M. et al. Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys. Rev. Lett. 96, 197207 (2006).

    Article  ADS  Google Scholar 

  19. Beach, G. S. D., Knutson, C., Nistor, C., Tsoi, M. & Erskine, J. L. Nonlinear domain-wall velocity enhancement by spin-polarized electric current. Phys. Rev. Lett. 97, 057203 (2006).

    Article  ADS  Google Scholar 

  20. Slonczewski, J. C. Theory of domain-wall motion in magnetic-films and platelets. J. Appl. Phys. 44, 1759–1770 (1973).

    Article  ADS  Google Scholar 

  21. Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).

    Article  ADS  Google Scholar 

  22. Schryer, N. L. & Walker, L. R. Motion of 180 degrees domain-walls in uniform dc magnetic-fields. J. Appl. Phys. 45, 5406–5421 (1974).

    Article  ADS  Google Scholar 

  23. Scheinfein, M. R. LLG micromagnetics simulator ™. <http://llgmicro.home.mindspring.com/>.

Download references

Acknowledgements

We thank DMEA for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, M., Thomas, L., Rettner, C. et al. Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nature Phys 3, 21–25 (2007). https://doi.org/10.1038/nphys464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing