Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entanglement percolation in quantum networks

Abstract

Quantum networks are composed of nodes that can send and receive quantum states by exchanging photons1. Their goal is to facilitate quantum communication between any nodes, something that can be used to send secret messages in a secure way2,3, and to communicate more efficiently than in classical networks4. These goals can be achieved, for instance, via teleportation5. Here we show that the design of efficient quantum-communication protocols in quantum networks involves intriguing quantum phenomena, depending both on the way the nodes are connected and on the entanglement between them. These phenomena can be used to design protocols that overcome the exponential decrease of signals with the number of nodes. We relate the problem of establishing maximally entangled states between nodes to classical percolation in statistical mechanics6, and demonstrate that phase transitions7 can be used to optimize the operation of quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum networks.
Figure 2: Quantum repeaters in the one-dimensional chain.
Figure 3: Example of a quantum network where entanglement percolation and CEP are not equivalent.

Similar content being viewed by others

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  2. Bennett, C. H. & Brassard, G. in Proc. Int. Conf. on Computer Systems and Signal Processing, Bangalore 175–179 (IEEE, New York, 1984).

    Google Scholar 

  3. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  4. Buhrman, H., Cleve, R., Watrous, J. & de Wolf, R. Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001).

    Article  ADS  Google Scholar 

  5. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolski–Rosen channels. Phys. Rev. Lett. 70, 1895–1898 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  6. Grimmett, G. Percolation (Springer, Berlin, 1999).

    Book  Google Scholar 

  7. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  8. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  9. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  10. Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  11. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  12. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).

    Article  ADS  Google Scholar 

  13. Törmä, P. Transitions in quantum networks. Phys. Rev. Lett. 81, 2185–2189 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  14. Leung, D., Oppenheim, J. & Winter, A. Quantum network communication—the butterfly and beyond. Preprint at <http://arxiv.org/abs/quant-ph/0608223> (2006).

  15. Verstraete, F., Popp, M. & Cirac, J. I. Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004).

    Article  ADS  Google Scholar 

  16. Popp, M., Verstraete, F., Martín-Delgado, M. A. & Cirac, J. I. Localizable entanglement. Phys. Rev. A 71, 042306 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  17. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  18. Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. Preprint at <http://arxiv.org/abs/cond-mat/0407066> (2004).

  19. Osterloh, A., Amico, L., Falci, G. & Fazio, R. Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002).

    Article  ADS  Google Scholar 

  20. Osborne, T. J. & Nielsen, M. A. Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  21. Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003).

    Article  ADS  Google Scholar 

  22. Vidal, G. Entanglement of pure states for a single copy. Phys. Rev. Lett. 83, 1046–1049 (1999).

    Article  ADS  Google Scholar 

  23. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. Event-ready detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  Google Scholar 

  24. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    Article  ADS  Google Scholar 

  25. Verstraete, F., Martín-Delgado, M. A. & Cirac, J. I. Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92, 087201 (2004).

    Article  ADS  Google Scholar 

  26. Nielsen, M. A. Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436–439 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Verstraete, J. Wehr and M. M. Wolf for discussion. We acknowledge support from Deutsche Forschungsgemeinschaft, EU IP Programmes ‘SCALA’ and ‘QAP’, European Science Foundation PESC QUDEDIS, MEC (Spanish Government) under contracts FIS 2005-04627, FIS 2004-05639, ‘Ramón y Cajal’ and Consolider QOIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Cirac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acín, A., Cirac, J. & Lewenstein, M. Entanglement percolation in quantum networks. Nature Phys 3, 256–259 (2007). https://doi.org/10.1038/nphys549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing