Abstract
Embedding magnetic moments into semiconductor heterostructures offers a tuneable access to various forms of magnetic ordering and phase transitions in low-dimensional electron systems. In general, the moments are introduced artificially, by either doping with ferromagnetic atoms, or electrostatically confining odd-electron quantum dots1,2,3,4. Here, we report experimental evidence of an independent, and intrinsic, source of localized spins in high-mobility GaAs/AlGaAs heterostructures with large setback distance (≈80 nm) in modulation doping. Measurements reveal a quasi-regular distribution of the spins in the delocalized Fermi sea, and a mutual interaction via the Ruderman–Kittel–Kasuya–Yosida (RKKY) indirect exchange below 100 mK. We show that a simple model on the basis of the fluctuations in background potential on the host two-dimensional electron system can explain the observed results quantitatively, which suggests a ‘disorder-templated’ microscopic origin of the localized moments.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


).

Similar content being viewed by others
References
Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).
Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).
Jeong, H., Chang, A. M. & Melloch, M. R. The Kondo effect in an artificial quantum dot molecule. Science 293, 2221–2223 (2001).
Craig, N. J. et al. Tunable nonlocal spin control in a coupled-quantum dot system. Science 304, 565–567 (2004).
Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo hamiltonians. Phys. Rev. 149, 491–492 (1966).
Wolf, E. L. & Losee, D. L. Spectroscopy of Kondo and spin-flip scattering: High-field tunneling studies of Schottky-Barrier junctions. Phys. Rev. B 2, 3660–3687 (1970).
Cronenwett, S. M. et al. Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system. Phys. Rev. Lett. 88, 226805 (2002).
Ghosh, A., Ford, C. J. B., Pepper, M., Beere, H. E. & Ritchie, D. A. Possible evidence of a spontaneous spin polarization in mesoscopic two-dimensional electron systems. Phys. Rev. Lett. 92, 116601 (2004).
Ghosh, A. et al. Zero-bias anomaly and kondo-assisted quasiballistic 2D transport. Phys. Rev. Lett. 95, 066603 (2005).
Jayaprakash, C., Krishnamurthy, H. R. & Wilkins, J. W. Two-impurity Kondo problem. Phys. Rev. Lett. 47, 737–740 (1981).
Affleck, I. & Ludwig, A. W. W. Exact critical theory of the two-impurity Kondo model. Phys. Rev. Lett. 68, 1046–1049 (1992).
Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).
Heersche, H. B. et al. Kondo effect in the presence of magnetic impurities. Phys. Rev. Lett. 96, 017205 (2006).
Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).
Thornton, T. J., Pepper, M., Ahmed, H., Davies, G. J. & Andrews, D. Universal conductance fluctuations and electron coherence lengths in a narrow two-dimensional electron gas. Phys. Rev. B 36, 4514–4517 (1987).
Schuster, R., Ensslin, K., Wharam, D., Kühn, S. & Kotthaus, J. P. Phase-coherent electrons in a finite antidot lattice. Phys. Rev. B 49, 8510–8513 (1994).
Weiss, D. et al. Quantized periodic orbits in large antidot arrays. Phys. Rev. Lett. 70, 4118–4121 (1993).
Weiss, D. et al. Electron pinball and commensurate orbits in a periodic array of scatterers. Phys. Rev. Lett. 66, 2790–2793 (1991).
Hirsch, M. J., Holcomb, D. F., Bhatt, R. N. & Paalanen, M. A. ESR studies of compensated Si:P,B near the metal–insulator transition. Phys. Rev. Lett. 68, 1418–1421 (1992).
Roche, S. & Mayou, D. Formalism for the computation of the RKKY interaction in aperiodic systems. Phys. Rev. B 60, 322–328 (1999).
Béal-Monod, M. T. Ruderman–Kittel–Kasuya–Yosida indirect interaction in two dimensions. Phys. Rev. B 36, 8835–8836 (1987).
Efros, A. L., Pikus, F. G. & Samsonidze, G. G. Maximum low-temperature mobility of two-dimensional electrons in heterojunctions with thick spacer layer. Phys. Rev. B 41, 8295–8301 (1990).
Buks, E., Heiblum, M. & Shtrikman, H. Correlated charged donors and strong mobility enhancement in a two-dimensional electron gas. Phys. Rev. B 49, 14790–14793 (1994).
Grill, R. & Döhler, G. H. Effect of charged donor correlation and Wigner liquid formation on the transport properties of a two-dimensional electron gas in modulation Δ-doped heterojunctions. Phys. Rev. B 59, 10769–10777 (1999).
Finkelstein, G., Glicofridis, P. I., Ashoori, R. C. & Shayegan, M. Topographic mapping of the quantum Hall liquid using a few-electron bubble. Science 289, 90–94 (2000).
Graham, A. C., Pepper, M., Simmons, M. Y. & Ritchie, D. A. Anomalous spin-dependent behavior of one-dimensional subbands. Phys. Rev. B 72, 193305 (2005).
Berggren, K.-F., Jaksch, P. & Yakimenko, I. Effects of electron interactions at crossings of Zeeman-split subbands in quantum wires. Phys. Rev. B 71, 115303 (2005).
Meir, Y. Percolation-type description of the metal–insulator transition in two dimensions. Phys. Rev. Lett. 83, 3506–3509 (1999).
Acknowledgements
The work was supported by an EPSRC funded project. A.G. acknowledges discussions with C. J. B. Ford, G. Gumbs, M. Stopa, P. B. Littlewood, H. R. Krishnamurthy, B. D. Simons, C. M. Marcus, D. Goldhaber-Gordon and K. F. Berggren. C.S. acknowledges financial support from the Gottlieb Daimler and Karl Benz Foundation.
Author information
Authors and Affiliations
Contributions
Experimental work and data analysis were carried out by C.S. and A.G., project planning by A.G. and M.P. and wafer growing by I.F. and D.A.R.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Siegert, C., Ghosh, A., Pepper, M. et al. The possibility of an intrinsic spin lattice in high-mobility semiconductor heterostructures. Nature Phys 3, 315–318 (2007). https://doi.org/10.1038/nphys559
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys559
This article is cited by
-
Magnetic lattice surprise
Nature Physics (2007)
-
Unexpected features of branched flow through high-mobility two-dimensional electron gases
Nature Physics (2007)


