Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The possibility of an intrinsic spin lattice in high-mobility semiconductor heterostructures

Abstract

Embedding magnetic moments into semiconductor heterostructures offers a tuneable access to various forms of magnetic ordering and phase transitions in low-dimensional electron systems. In general, the moments are introduced artificially, by either doping with ferromagnetic atoms, or electrostatically confining odd-electron quantum dots1,2,3,4. Here, we report experimental evidence of an independent, and intrinsic, source of localized spins in high-mobility GaAs/AlGaAs heterostructures with large setback distance (≈80 nm) in modulation doping. Measurements reveal a quasi-regular distribution of the spins in the delocalized Fermi sea, and a mutual interaction via the Ruderman–Kittel–Kasuya–Yosida (RKKY) indirect exchange below 100 mK. We show that a simple model on the basis of the fluctuations in background potential on the host two-dimensional electron system can explain the observed results quantitatively, which suggests a ‘disorder-templated’ microscopic origin of the localized moments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kondo resonance in the density of states (DOS) of a multiple-spin system with zero and non-zero inter-impurity exchange interaction J12.
Figure 2: Non-equilibrium characteristics.
Figure 3: Quantum and classical magnetotransport in perpendicular magnetic field ().
Figure 4: RKKY indirect exchange and ‘2kFR oscillations’.

Similar content being viewed by others

References

  1. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  ADS  Google Scholar 

  2. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum dots. Science 281, 540–544 (1998).

    Article  ADS  Google Scholar 

  3. Jeong, H., Chang, A. M. & Melloch, M. R. The Kondo effect in an artificial quantum dot molecule. Science 293, 2221–2223 (2001).

    Article  ADS  Google Scholar 

  4. Craig, N. J. et al. Tunable nonlocal spin control in a coupled-quantum dot system. Science 304, 565–567 (2004).

    Article  ADS  Google Scholar 

  5. Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo hamiltonians. Phys. Rev. 149, 491–492 (1966).

    Article  ADS  Google Scholar 

  6. Wolf, E. L. & Losee, D. L. Spectroscopy of Kondo and spin-flip scattering: High-field tunneling studies of Schottky-Barrier junctions. Phys. Rev. B 2, 3660–3687 (1970).

    Article  ADS  Google Scholar 

  7. Cronenwett, S. M. et al. Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system. Phys. Rev. Lett. 88, 226805 (2002).

    Article  ADS  Google Scholar 

  8. Ghosh, A., Ford, C. J. B., Pepper, M., Beere, H. E. & Ritchie, D. A. Possible evidence of a spontaneous spin polarization in mesoscopic two-dimensional electron systems. Phys. Rev. Lett. 92, 116601 (2004).

    Article  ADS  Google Scholar 

  9. Ghosh, A. et al. Zero-bias anomaly and kondo-assisted quasiballistic 2D transport. Phys. Rev. Lett. 95, 066603 (2005).

    Article  ADS  Google Scholar 

  10. Jayaprakash, C., Krishnamurthy, H. R. & Wilkins, J. W. Two-impurity Kondo problem. Phys. Rev. Lett. 47, 737–740 (1981).

    Article  ADS  Google Scholar 

  11. Affleck, I. & Ludwig, A. W. W. Exact critical theory of the two-impurity Kondo model. Phys. Rev. Lett. 68, 1046–1049 (1992).

    Article  ADS  Google Scholar 

  12. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    Article  ADS  Google Scholar 

  13. Heersche, H. B. et al. Kondo effect in the presence of magnetic impurities. Phys. Rev. Lett. 96, 017205 (2006).

    Article  ADS  Google Scholar 

  14. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    Article  ADS  Google Scholar 

  15. Thornton, T. J., Pepper, M., Ahmed, H., Davies, G. J. & Andrews, D. Universal conductance fluctuations and electron coherence lengths in a narrow two-dimensional electron gas. Phys. Rev. B 36, 4514–4517 (1987).

    Article  ADS  Google Scholar 

  16. Schuster, R., Ensslin, K., Wharam, D., Kühn, S. & Kotthaus, J. P. Phase-coherent electrons in a finite antidot lattice. Phys. Rev. B 49, 8510–8513 (1994).

    Article  ADS  Google Scholar 

  17. Weiss, D. et al. Quantized periodic orbits in large antidot arrays. Phys. Rev. Lett. 70, 4118–4121 (1993).

    Article  ADS  Google Scholar 

  18. Weiss, D. et al. Electron pinball and commensurate orbits in a periodic array of scatterers. Phys. Rev. Lett. 66, 2790–2793 (1991).

    Article  ADS  Google Scholar 

  19. Hirsch, M. J., Holcomb, D. F., Bhatt, R. N. & Paalanen, M. A. ESR studies of compensated Si:P,B near the metal–insulator transition. Phys. Rev. Lett. 68, 1418–1421 (1992).

    Article  ADS  Google Scholar 

  20. Roche, S. & Mayou, D. Formalism for the computation of the RKKY interaction in aperiodic systems. Phys. Rev. B 60, 322–328 (1999).

    Article  ADS  Google Scholar 

  21. Béal-Monod, M. T. Ruderman–Kittel–Kasuya–Yosida indirect interaction in two dimensions. Phys. Rev. B 36, 8835–8836 (1987).

    Article  ADS  Google Scholar 

  22. Efros, A. L., Pikus, F. G. & Samsonidze, G. G. Maximum low-temperature mobility of two-dimensional electrons in heterojunctions with thick spacer layer. Phys. Rev. B 41, 8295–8301 (1990).

    Article  ADS  Google Scholar 

  23. Buks, E., Heiblum, M. & Shtrikman, H. Correlated charged donors and strong mobility enhancement in a two-dimensional electron gas. Phys. Rev. B 49, 14790–14793 (1994).

    Article  ADS  Google Scholar 

  24. Grill, R. & Döhler, G. H. Effect of charged donor correlation and Wigner liquid formation on the transport properties of a two-dimensional electron gas in modulation Δ-doped heterojunctions. Phys. Rev. B 59, 10769–10777 (1999).

    Article  ADS  Google Scholar 

  25. Finkelstein, G., Glicofridis, P. I., Ashoori, R. C. & Shayegan, M. Topographic mapping of the quantum Hall liquid using a few-electron bubble. Science 289, 90–94 (2000).

    Article  ADS  Google Scholar 

  26. Graham, A. C., Pepper, M., Simmons, M. Y. & Ritchie, D. A. Anomalous spin-dependent behavior of one-dimensional subbands. Phys. Rev. B 72, 193305 (2005).

    Article  ADS  Google Scholar 

  27. Berggren, K.-F., Jaksch, P. & Yakimenko, I. Effects of electron interactions at crossings of Zeeman-split subbands in quantum wires. Phys. Rev. B 71, 115303 (2005).

    Article  ADS  Google Scholar 

  28. Meir, Y. Percolation-type description of the metal–insulator transition in two dimensions. Phys. Rev. Lett. 83, 3506–3509 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by an EPSRC funded project. A.G. acknowledges discussions with C. J. B. Ford, G. Gumbs, M. Stopa, P. B. Littlewood, H. R. Krishnamurthy, B. D. Simons, C. M. Marcus, D. Goldhaber-Gordon and K. F. Berggren. C.S. acknowledges financial support from the Gottlieb Daimler and Karl Benz Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Experimental work and data analysis were carried out by C.S. and A.G., project planning by A.G. and M.P. and wafer growing by I.F. and D.A.R.

Corresponding authors

Correspondence to Christoph Siegert or Arindam Ghosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegert, C., Ghosh, A., Pepper, M. et al. The possibility of an intrinsic spin lattice in high-mobility semiconductor heterostructures. Nature Phys 3, 315–318 (2007). https://doi.org/10.1038/nphys559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys559

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing