Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient unidirectional nanoslit couplers for surface plasmons

Abstract

The emerging field of plasmonics is based on exploiting the coupling between light and collective electronic excitations within conducting materials known as surface plasmons. Because the so-called surface plasmon polariton (SPP) modes that arise from this coupling are not constrained by the optical diffraction limit, it is hoped that they could enable the construction of ultracompact optical components1,2. But in order that such potential can be realized, it is vital that the relatively poor light–SPP coupling be improved. This is made worse by the fact that the incident light that is conventionally used to launch SPPs in a metal film 3,4,5,6 is a significant source of noise, unless directed away from a region of interest, which then decreases the signal and increases the system’s size. Back-side illumination of subwavelength apertures in optically thick metal films7,8,9,10,11,12,13 eliminates this problem but does not ensure a unique propagation direction for the SPP. We propose a novel back-side slit-illumination method that incorporates a periodic array of grooves carved into the front side of a thick metal film. Bragg reflection enhances the propagation of SPPs away from the array, enabling them to be unidirectionally launched from, and focused to, a localized point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrographs and schematic diagrams of the structures investigated.
Figure 2: Theoretical and experimental results for the SPP launcher at wavelength λ=800 nm.
Figure 3: Experimental results and modal expansion calculations for the spectral dependence of ER at the telecom range.
Figure 4: Simultaneous unidirectional SPP excitation and focusing using a curved slit flanked with concentric periodic grooves.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  2. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  ADS  Google Scholar 

  3. Otto, A. Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968).

    Article  ADS  Google Scholar 

  4. Lamprecht, B. et al. Surface plasmon propagation in microscale metal stripes. Appl. Phys. Lett. 79, 51–53 (2001).

    Article  ADS  Google Scholar 

  5. Ritchie, R. H., Arakawa, E. T., Cowan, J. J. & Hamm, R. N. Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968).

    Article  ADS  Google Scholar 

  6. Ditlbacher, H. et al. Fluorescence imaging of surface plasmon fields. Appl. Phys. Lett. 80, 404–406 (2002).

    Article  ADS  Google Scholar 

  7. Sönnichsen, C. et al. Launching surface plasmons into nanoholes in metal films. Appl. Phys. Lett. 76, 140–142 (2000).

    Article  ADS  Google Scholar 

  8. Devaux, E., Ebbesen, T. W., Weeber, J. C. & Dereux, A. Launching and decoupling surface plasmons via micro-gratings. Appl. Phys. Lett. 83, 4936–4938 (2003).

    Article  ADS  Google Scholar 

  9. Yin, L. et al. Surface plasmons at single nanoholes in Au films. Appl. Phys. Lett. 85, 467–469 (2004).

    Article  ADS  Google Scholar 

  10. Popov, E. et al. Surface plasmon excitation on a single subwavelength hole in a metallic sheet. Appl. Opt. 44, 2332–2337 (2005).

    Article  ADS  Google Scholar 

  11. Agrawal, A., Cao, H. & Nahata, A. Excitation and scattering of surface plasmon-polaritons on structured metal films and their application to pulse shaping and enhanced transmission. New J. Phys. 7, 249 (2005).

    Article  ADS  Google Scholar 

  12. Chang, S. H., Gray, S. K. & Schatz, G. C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express 13, 3150–3165 (2005).

    Article  ADS  Google Scholar 

  13. Lalanne, P., Hugonin, J. P. & Rodier, C. Theory of surface plasmon generation at nanoslit apertures. Phys. Rev. Lett. 95, 263902 (2005).

    Article  ADS  Google Scholar 

  14. Bozhevolnyi, S. I., Boltasseva, A., Sondergaard, T., Nikolajsen, T. & Leosson, K. Photonic bandgap structures for long-range surface plasmon polaritons. Opt. Commun. 250, 328–333 (2005).

    Article  ADS  Google Scholar 

  15. López-Tejeira, F., García-Vidal, F. J. & Martín-Moreno, L. Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces. Phys. Rev. B 72, 161405(R) (2005).

    Article  ADS  Google Scholar 

  16. González, M. U. et al. Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors. Phys. Rev. B 73, 155416 (2006).

    Article  ADS  Google Scholar 

  17. Martín-Moreno, L., García-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003).

    Article  ADS  Google Scholar 

  18. Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

    MATH  Google Scholar 

  19. Vial, A., Grimault, A., Macias, D., Barchesi, D. & de la Chapelle, M. Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71, 085416 (2005).

    Article  ADS  Google Scholar 

  20. Nomura, W., Ohtsu, M. & Yatsui, T. Nanodot coupler wih a surface plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. Lett. 86, 181108 (2005).

    Article  ADS  Google Scholar 

  21. Yin, L. et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005).

    Article  ADS  Google Scholar 

  22. Liu, Z. et al. Focusing surface plasmons with a plasmonic lens. Nano Lett. 5, 1726–1729 (2005).

    Article  ADS  Google Scholar 

  23. Offerhous, H. L. et al. Creating focused plasmons by noncollinear phasematching on functional gratings. Nano Lett. 5, 2144–2148 (2005).

    Article  ADS  Google Scholar 

  24. Steele, J. M., Liu, Z., Wang, Y. & Zhang, X. Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. Opt. Express 14, 5664–5670 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support by the EC under Project FP6-2002-IST-1-507879 (Plasmo-Nano-Devices) is gratefully acknowledged. We thank J. Dintinger and J.-Y. Laluet for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Martín-Moreno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Tejeira, F., Rodrigo, S., Martín-Moreno, L. et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nature Phys 3, 324–328 (2007). https://doi.org/10.1038/nphys584

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing