Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin–lattice instability to a fractional magnetization state in the spinel HgCr2O4

Abstract

Magnetic systems are fertile ground for the emergence of exotic states1 when the magnetic interactions cannot be satisfied simultaneously owing to the topology of the lattice—a situation known as geometrical frustration2,3. Spinels, AB2O4, can realize the most highly frustrated network of corner-sharing tetrahedra1,2,3. Several novel states have been discovered in spinels, such as composite spin clusters1 and novel charge-ordered states4,5,6. Here, we use neutron and synchrotron X-ray scattering to characterize the fractional magnetization state of HgCr2O4 under an external magnetic field, H. When the field is applied in its Néel ground state, a phase transition occurs at H10 T at which each tetrahedron changes from a canted Néel state to a fractional spin state with the total spin, Stet, of S/2 and the lattice undergoes an orthorhombic to cubic symmetry change. Our results provide the microscopic one-to-one correspondence between the spin state and the lattice distortion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Q- and T-dependence of magnetic neutron scattering from a powder sample of HgCr2O4.
Figure 2: Possible spin structures of the Cr3+ (3d3) (S=3/2) moments in HgCr2O4.
Figure 3: External magnetic field (H ) effects on magnetic and nuclear Bragg scattering from a powder sample of HgCr2O4.

Similar content being viewed by others

References

  1. Lee, S.-H. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002).

    Article  ADS  Google Scholar 

  2. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  ADS  Google Scholar 

  3. Ramirez, A. P. in Handbook on Magnetic Materials Vol. 13 (ed. Busch, K. J. H.) 423–520 (Elsevier Science, Amsterdam, 2001).

    Google Scholar 

  4. Iizumi, M. et al. Structure of magnetite (Fe3O4) below the Verwey transition temperature. Acta Crystallogr. 38, 2121–2133 (1982).

    Article  Google Scholar 

  5. Radaelli, P. G. et al. Formation of isomorphic Ir3+ and Ir4+ octamers and spin dimerization in the spinel CuIr2S4 . Nature 416, 155–158 (2002).

    Article  ADS  Google Scholar 

  6. Horibe, Y. et al. Spontaneous formation of vanadium molecules in a geometrically frustrated crystal: AlV2O4 . Phys. Rev. Lett. 96, 086406 (2006).

    Article  ADS  Google Scholar 

  7. Moessner, R. & Chalker, J. T. Properties of a classical spin liquid: The Heisenberg pyrochlore antiferromagnet. Phys. Rev. Lett. 80, 2929–2932 (1998).

    Article  ADS  Google Scholar 

  8. Canals, B. & Lacroix, C. Pyrochlore antiferromagnet: A three-dimensional quantum spin liquid. Phys. Rev. Lett. 80, 2933–2936 (1998).

    Article  ADS  Google Scholar 

  9. Goodenough, J. B. Direct cation-cation interaction in several oxides. Phys. Rev. 117, 1442–1451 (1960).

    Article  ADS  Google Scholar 

  10. Samuelsen, E. J., Hutchings, M. T. & Shirane, G. Inelastic neutron scattering investigation of spin waves and magnetic interactions in Cr2O3 . Physica 48, 13–42 (1970).

    Article  ADS  Google Scholar 

  11. Lee, S.-H., Broholm, C., Kim, T. H., Ratcliff, W. & Cheong, S.-W. Local spin resonance and spin-Peierls-like phase transition in a geometrically frustrated antiferromagnet. Phys. Rev. Lett. 84, 3718–3721 (2000).

    Article  ADS  Google Scholar 

  12. Ueda, H., Aruga-Katori, H., Mitamura, H., Goto, T. & Takagi, H. Magnetic-field induced transition to the 1/2 magnetization plateau state in the geometrically frustrated magnet CdCr2O4 . Phys. Rev. Lett. 94, 047202 (2005).

    Article  ADS  Google Scholar 

  13. Ueda, H., Mitamura, H., Goto, T. & Ueda, Y. Successive field-induced transitions in a frustrated antiferromagnet HgCr2O4 . Phys. Rev. B 73, 094415 (2006).

    Article  ADS  Google Scholar 

  14. Yamashita, Y. & Ueda, K. Spin-driven Jahn-Teller distortion in a pyrochlore system. Phys. Rev. Lett. 85, 4960–4963 (2000).

    Article  ADS  Google Scholar 

  15. Tchernyshyov, O., Moessner, R. & Sondhi, S. L. Order by distortion and string modes in pyrochlore antiferromagnets. Phys. Rev. Lett. 88, 067203 (2002).

    Article  ADS  Google Scholar 

  16. Keren, A. & Gardner, J. S. Frustration driven lattice distortion: An NMR investigation of Y2Mo2O7 . Phys. Rev. Lett. 87, 177201 (2001).

    Article  ADS  Google Scholar 

  17. Khomskii, D. I. & Mizokawa, T. Orbitally induced Peierls state in spinels. Phys. Rev. Lett. 94, 156402 (2005).

    Article  ADS  Google Scholar 

  18. Ueda, Y., Fujiwara, N. & Yasuoka, H. Magnetic and structural transitions in (LixZn1−x)V2O4 with the spinel structure. J. Phys. Soc. Jpn 66, 778–783 (1997).

    Article  ADS  Google Scholar 

  19. Tsunetsugu, H. & Motome, Y. Magnetic transition and orbital degrees of freedom in vanadium spinels. Phys. Rev. B 68, 060405(R) (2003).

    Article  ADS  Google Scholar 

  20. Lee, S.-H. et al. Orbital and spin chains in ZnV2O4 . Phys. Rev. Lett. 93, 156407 (2004).

    Article  ADS  Google Scholar 

  21. Zhang, Z. et al. Local order and frustration in geometrically frustrated spinels Cd1−xZnxV2O4 . Phys. Rev. B 74, 014108 (2006).

    Article  ADS  Google Scholar 

  22. Chung, J.-H. et al. Statics and dynamics of incommensurate spin order in a geometrically frustrated antiferromagnet CdCr2O4 . Phys. Rev. Lett. 95, 247204 (2005).

    Article  ADS  Google Scholar 

  23. Motida, M. & Miahara, S. On the 90 exchange interaction between cations (Cr3+, Mn2+, Fe3+ and Ni2+) in oxides. J. Phys. Soc. Jpn 28, 1188–1196 (1970).

    Article  ADS  Google Scholar 

  24. Penc, K., Shannon, N. & Shiba, H. Half-magnetization plateau stabilized by structural distortion in the antiferromagnetic Heisenberg model on a pyrochlore lattice. Phys. Rev. Lett. 93, 197203 (2004).

    Article  ADS  Google Scholar 

  25. Bergman, D. L., Shindou, R., Fiete, G. A. & Balents, L. Quantum effects in half-polarized pyrochlore antiferromagnet. Phys. Rev. Lett. 96, 097207 (2006).

    Article  ADS  Google Scholar 

  26. Bergman, D. L., Shindou, R., Fiete, G. A. & Balents, L. Mechanisms of degeneracy breaking in pyrochlore antiferromagnets. Phys. Rev. B 74, 134409 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Katano for use of the 13.5 T magnet, L. Balents, M. Gingras, K. Kakurai, D. I. Khomskii, K. Penc and H. Takagi for helpful discussions and J.-H. Chung and Y. Shimojo for technical assistance. M.M. is supported by MEXT of Japan and JSPS. Activities at SPINS were partially supported by NSF. S.-H.L. is partially supported by NIST.

Author information

Authors and Affiliations

Corresponding author

Correspondence to S.-H. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, M., Ueda, H., Kikkawa, A. et al. Spin–lattice instability to a fractional magnetization state in the spinel HgCr2O4. Nature Phys 3, 397–400 (2007). https://doi.org/10.1038/nphys586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing