Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging magnetic focusing of coherent electron waves

Abstract

The coherent flow of electrons through a two-dimensional electron gas1,2,3,4,5,6,7,8 (2DEG) offers promising approaches for spintronics8,9,10 and quantum information processing11,12. Cryogenic scanning probe microscopes (SPMs) are a valuable tool for imaging electron motion13,14,15,16,17,18,19,20,21,22,23,24,25, but have been limited by their inability to follow such motion through an open structure under an applied magnetic field. Here we report a way to visualize the flow of electron waves from one point to another by using the SPM tip to create a lens in the 2DEG below. The lens deflects electrons and casts a shadow downstream. We use this technique to image magnetic focusing in a GaAs 2DEG. Magnetic focusing occurs when electrons flowing from one quantum point contact (QPC) rejoin at a second QPC a number of cyclotron diameters away3,4,9,26,27. Our images show semicircular trajectories as the electrons bounce along the boundary, as well as fringes created by the interference of multiple paths, demonstrating that the flow is coherent18,19,28. Remarkable agreement between experiment and theory demonstrates our ability to visualize electron trajectories in a magnetic field, and to make a new type of imaging electron interferometer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Set-up for SPM images and simulations of magnetic focusing in a 2DEG.
Figure 2: Experimental SPM images of magnetic focusing in a 2DEG at 4.2 K recorded near the first three magnetic focusing peaks.
Figure 3: Quantum simulations of SPM images including small-angle scattering.
Figure 4: Direct comparison of interference fringes between experiment and theory for different tip strengths.

Similar content being viewed by others

References

  1. Sohn, L. L., Kouwenhoven, L. P. & Schon, G. Mesoscopic Electron Transport (Kluwer Academic, 1997).

    Book  Google Scholar 

  2. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  ADS  Google Scholar 

  3. van Houten, H. et al. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas. Phys. Rev. B 39, 8556–8575 (1989).

    Article  ADS  Google Scholar 

  4. Beenakker, C. W. M. & van Houten, H. Billiard model of a ballistic multiprobe conductor. Phys. Rev. Lett. 63, 1857–1860 (1989).

    Article  ADS  Google Scholar 

  5. Shepard, K. L., Roukes, M. L. & Van der Gaag, B. P. Direct measurement of the transmission matrix of a mesoscopic conductor. Phys. Rev. Lett. 68, 2660–2663 (1992).

    Article  ADS  Google Scholar 

  6. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  ADS  Google Scholar 

  7. Katine, J. A. et al. Point contact conductance of an open resonator. Phys. Rev. Lett. 79, 4806–4809 (1997).

    Article  ADS  Google Scholar 

  8. Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  ADS  Google Scholar 

  9. Rokhinson, L. P., Larkina, V., Lyanda-Geller, Y. B., Pfeiffer, L. N. & West, K. W. Spin separation in cyclotron motion. Phys. Rev. Lett. 93, 146601 (2004).

    Article  ADS  Google Scholar 

  10. Schliemann, J., Loss, D. & Westervelt, R. M. Zitterbewegung of electronic wave packets in III–V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 94, 206801 (2005).

    Article  ADS  Google Scholar 

  11. Awschalom, D. D., Loss, D. & Samarth, N. Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).

    Book  Google Scholar 

  12. Saraga, D. S., Altshuler, B. L., Westervelt, R. M. & Loss, D. Coulomb scattering in a 2D interacting electron gas and production of EPR pairs. Phys. Rev. Lett. 92, 246803 (2004).

    Article  ADS  Google Scholar 

  13. Topinka, M. A., Westervelt, R. M. & Heller, E. J. Imaging electron flow. Phys. Today 56, 47–52 (2003).

    Article  ADS  Google Scholar 

  14. Eriksson, M. A. et al. Cryogenic scanning-probe characterization of semiconductor nanostructures. Appl. Phys. Lett. 69, 671–673 (1996).

    Article  ADS  Google Scholar 

  15. Tessmer, S. H., Glicofridis, P. I., Ashoori, R. C., Levitov, L. S. & Melloch, M. R. Subsurface charge accumulation imaging of a quantum Hall liquid. Nature 392, 51–54 (1998).

    Article  ADS  Google Scholar 

  16. Yacoby, A., Hess, H. F., Fulton, T. A., Pfeiffer, L. N. & West, K. W. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).

    Article  ADS  Google Scholar 

  17. McCormick, K. L. et al. Scanned potential microscopy of edge and bulk currents in the quantum Hall regime. Phys. Rev. B 59, 4654–4657 (1999).

    Article  ADS  Google Scholar 

  18. Topinka, M. A. et al. Imaging coherent flow from a quantum point contact. Science 289, 2323–2326 (2000).

    Article  ADS  Google Scholar 

  19. Topinka, M. A. et al. Coherent branched flow in a two-dimensional electron gas. Nature 410, 183–188 (2001).

    Article  ADS  Google Scholar 

  20. Steele, G. A., Ashoori, R. C., Pfeiffer, L. N. & West, K. W. Imaging transport resonances in the quantum Hall effect. Phys. Rev. Lett. 95, 136804 (2005).

    Article  ADS  Google Scholar 

  21. Crook, R., Smith, C. G., Simmons, M. Y. & Ritchie, D. A. Imaging cyclotron orbits and scattering sites in a high-mobility two-dimensional electron gas. Phys. Rev. B 62, 5174–5178 (2000).

    Article  ADS  Google Scholar 

  22. Crook, R. et al. Erasable electrostatic lithography for quantum computers. Nature 424, 751–755 (2003).

    Article  ADS  Google Scholar 

  23. Ihn, T. et al. Local spectroscopy of edge channels in the quantum Hall regime with local probe techniques. Physica E 13, 671–674 (2002).

    Article  ADS  Google Scholar 

  24. Kicin, S. et al. Local backscattering in the quantum Hall regime. Phys Rev. B 70, 205302 (2004).

    Article  ADS  Google Scholar 

  25. Aoki, N., da Cunha, C. R., Akis, R., Ferry, D. K. & Ochiai, Y. Imaging of integer quantum Hall edge state in a quantum point contact via scanning gate microscopy. Phys. Rev. B 72, 155327 (2005).

    Article  ADS  Google Scholar 

  26. Sharvin, Y. V. & Fisher, L. M. Observation of focused electron beams in a metal. JETP Lett. 1, 152–153 (1965).

    ADS  Google Scholar 

  27. Tsoi, V. Focusing of electrons in a metal by a transverse magnetic field. JETP Lett. 19, 70–71 (1974).

    ADS  Google Scholar 

  28. LeRoy, B. J. et al. Imaging electron interferometer. Phys. Rev. Lett. 94, 126801 (2005).

    Article  ADS  Google Scholar 

  29. Aidala, K. E., Parrott, R. E., Heller, E. J. & Westervelt, R. M. Imaging electrons in a magnetic field. Physica E 34, 409–412 (2006).

    Article  ADS  Google Scholar 

  30. Heller, E. J. et al. Thermal averages in a quantum point contact with a single coherent wave packet. Nano Lett. 5, 1285–1292 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been performed with support at Harvard University from the ARO, the NSF-funded Nanoscale Science and Engineering Center (NSEC), and the DFG (Emmy-Noether program). Work at Santa Barbara has been supported in part by the Institute for Quantum Engineering, Science and Technology (iQUEST). We would also like to thank the National Nanotechnology Infrastructure Network (NNIN) and the Harvard CrimsonGrid for computing resources.

Author information

Authors and Affiliations

Authors

Contributions

K.E.A. conducted the experiments with R.M.W.; R.E.P. and T.K. carried out classical and quantum simulations of electron flow with E.J.H. and M.P.H. grew the semiconductor heterostructure with A.C.G.

Corresponding authors

Correspondence to Katherine E. Aidala or R. M. Westervelt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aidala, K., Parrott, R., Kramer, T. et al. Imaging magnetic focusing of coherent electron waves. Nature Phys 3, 464–468 (2007). https://doi.org/10.1038/nphys628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing