Abstract
The coherent flow of electrons through a two-dimensional electron gas1,2,3,4,5,6,7,8 (2DEG) offers promising approaches for spintronics8,9,10 and quantum information processing11,12. Cryogenic scanning probe microscopes (SPMs) are a valuable tool for imaging electron motion13,14,15,16,17,18,19,20,21,22,23,24,25, but have been limited by their inability to follow such motion through an open structure under an applied magnetic field. Here we report a way to visualize the flow of electron waves from one point to another by using the SPM tip to create a lens in the 2DEG below. The lens deflects electrons and casts a shadow downstream. We use this technique to image magnetic focusing in a GaAs 2DEG. Magnetic focusing occurs when electrons flowing from one quantum point contact (QPC) rejoin at a second QPC a number of cyclotron diameters away3,4,9,26,27. Our images show semicircular trajectories as the electrons bounce along the boundary, as well as fringes created by the interference of multiple paths, demonstrating that the flow is coherent18,19,28. Remarkable agreement between experiment and theory demonstrates our ability to visualize electron trajectories in a magnetic field, and to make a new type of imaging electron interferometer.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Sohn, L. L., Kouwenhoven, L. P. & Schon, G. Mesoscopic Electron Transport (Kluwer Academic, 1997).
van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).
van Houten, H. et al. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas. Phys. Rev. B 39, 8556–8575 (1989).
Beenakker, C. W. M. & van Houten, H. Billiard model of a ballistic multiprobe conductor. Phys. Rev. Lett. 63, 1857–1860 (1989).
Shepard, K. L., Roukes, M. L. & Van der Gaag, B. P. Direct measurement of the transmission matrix of a mesoscopic conductor. Phys. Rev. Lett. 68, 2660–2663 (1992).
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).
Katine, J. A. et al. Point contact conductance of an open resonator. Phys. Rev. Lett. 79, 4806–4809 (1997).
Kikkawa, J. M. & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).
Rokhinson, L. P., Larkina, V., Lyanda-Geller, Y. B., Pfeiffer, L. N. & West, K. W. Spin separation in cyclotron motion. Phys. Rev. Lett. 93, 146601 (2004).
Schliemann, J., Loss, D. & Westervelt, R. M. Zitterbewegung of electronic wave packets in III–V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 94, 206801 (2005).
Awschalom, D. D., Loss, D. & Samarth, N. Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).
Saraga, D. S., Altshuler, B. L., Westervelt, R. M. & Loss, D. Coulomb scattering in a 2D interacting electron gas and production of EPR pairs. Phys. Rev. Lett. 92, 246803 (2004).
Topinka, M. A., Westervelt, R. M. & Heller, E. J. Imaging electron flow. Phys. Today 56, 47–52 (2003).
Eriksson, M. A. et al. Cryogenic scanning-probe characterization of semiconductor nanostructures. Appl. Phys. Lett. 69, 671–673 (1996).
Tessmer, S. H., Glicofridis, P. I., Ashoori, R. C., Levitov, L. S. & Melloch, M. R. Subsurface charge accumulation imaging of a quantum Hall liquid. Nature 392, 51–54 (1998).
Yacoby, A., Hess, H. F., Fulton, T. A., Pfeiffer, L. N. & West, K. W. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).
McCormick, K. L. et al. Scanned potential microscopy of edge and bulk currents in the quantum Hall regime. Phys. Rev. B 59, 4654–4657 (1999).
Topinka, M. A. et al. Imaging coherent flow from a quantum point contact. Science 289, 2323–2326 (2000).
Topinka, M. A. et al. Coherent branched flow in a two-dimensional electron gas. Nature 410, 183–188 (2001).
Steele, G. A., Ashoori, R. C., Pfeiffer, L. N. & West, K. W. Imaging transport resonances in the quantum Hall effect. Phys. Rev. Lett. 95, 136804 (2005).
Crook, R., Smith, C. G., Simmons, M. Y. & Ritchie, D. A. Imaging cyclotron orbits and scattering sites in a high-mobility two-dimensional electron gas. Phys. Rev. B 62, 5174–5178 (2000).
Crook, R. et al. Erasable electrostatic lithography for quantum computers. Nature 424, 751–755 (2003).
Ihn, T. et al. Local spectroscopy of edge channels in the quantum Hall regime with local probe techniques. Physica E 13, 671–674 (2002).
Kicin, S. et al. Local backscattering in the quantum Hall regime. Phys Rev. B 70, 205302 (2004).
Aoki, N., da Cunha, C. R., Akis, R., Ferry, D. K. & Ochiai, Y. Imaging of integer quantum Hall edge state in a quantum point contact via scanning gate microscopy. Phys. Rev. B 72, 155327 (2005).
Sharvin, Y. V. & Fisher, L. M. Observation of focused electron beams in a metal. JETP Lett. 1, 152–153 (1965).
Tsoi, V. Focusing of electrons in a metal by a transverse magnetic field. JETP Lett. 19, 70–71 (1974).
LeRoy, B. J. et al. Imaging electron interferometer. Phys. Rev. Lett. 94, 126801 (2005).
Aidala, K. E., Parrott, R. E., Heller, E. J. & Westervelt, R. M. Imaging electrons in a magnetic field. Physica E 34, 409–412 (2006).
Heller, E. J. et al. Thermal averages in a quantum point contact with a single coherent wave packet. Nano Lett. 5, 1285–1292 (2005).
Acknowledgements
This work has been performed with support at Harvard University from the ARO, the NSF-funded Nanoscale Science and Engineering Center (NSEC), and the DFG (Emmy-Noether program). Work at Santa Barbara has been supported in part by the Institute for Quantum Engineering, Science and Technology (iQUEST). We would also like to thank the National Nanotechnology Infrastructure Network (NNIN) and the Harvard CrimsonGrid for computing resources.
Author information
Authors and Affiliations
Contributions
K.E.A. conducted the experiments with R.M.W.; R.E.P. and T.K. carried out classical and quantum simulations of electron flow with E.J.H. and M.P.H. grew the semiconductor heterostructure with A.C.G.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Aidala, K., Parrott, R., Kramer, T. et al. Imaging magnetic focusing of coherent electron waves. Nature Phys 3, 464–468 (2007). https://doi.org/10.1038/nphys628
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys628
This article is cited by
-
Electro-static properties of GaAs based two-dimensional bilayer systems
Indian Journal of Physics (2023)
-
Observation of branched flow of light
Nature (2020)
-
Transient lensing from a photoemitted electron gas imaged by ultrafast electron microscopy
Nature Communications (2020)
-
Controlled spatial separation of spins and coherent dynamics in spin-orbit-coupled nanostructures
Nature Communications (2017)
-
Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites
Nature Communications (2017)


