Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers

Abstract

If liquids, polymers, bio-materials, metals and molten salts can avoid crystallization during cooling or compression, they freeze into a microscopically disordered solid-like state, a glass1,2. On approaching the glass transition, particles become trapped in transient cages—in which they rattle on picosecond timescales—formed by their nearest neighbours; the particles spend increasing amounts of time in their cages as the average escape time, or structural relaxation time τα, increases from a few picoseconds to thousands of seconds through the transition. Owing to the huge difference between relaxation and vibrational timescales, theoretical3,4,5,6,7,8,9 studies addressing the underlying rattling process have challenged our understanding of the structural relaxation. Numerical10,11,12,13 and experimental studies on liquids14 and glasses8,15,16,17,18,19 support the theories, but not without controversies20 (for a review see ref. 21). Here we show computer simulations that, when compared with experiments, reveal the universal correlation of the structural relaxation time (as well as the viscosity η) and the rattling amplitude from glassy to low-viscosity states. According to the emerging picture the glass softens when the rattling amplitude exceeds a critical value, in agreement with the Lindemann criterion for the melting of crystalline solids22 and the free-volume model23.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MD simulations of the polymer melt.
Figure 2: The structural relaxation time τα versus the DW factor 〈u2〉 from MD simulations for different chain lengths.
Figure 3: Scaling of the structural relaxation time τα (in MD units) versus the reduced mean square amplitude .

Similar content being viewed by others

References

  1. Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).

    Article  ADS  Google Scholar 

  2. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  ADS  Google Scholar 

  3. Tobolsky, A., Powell, R. E. & Eyring, H. in Frontiers in Chemistry Vol. 1 (eds Burk, R. E. & Grummit, O.) 125–190 (Interscience, New York, 1943).

    Google Scholar 

  4. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  ADS  Google Scholar 

  5. Hall, R. W. & Wolynes, P. G. The aperiodic crystal picture and free energy barriers in glasses. J. Chem. Phys. 86, 2943–2948 (1987).

    Article  ADS  Google Scholar 

  6. Dyre, J. C., Olsen, N. B. & Christensen, T. Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Phys. Rev. B 53, 2171–2174 (1996).

    Article  ADS  Google Scholar 

  7. Ngai, K. L. Dynamic and thermodynamic properties of glass-forming substances. J. Non-Cryst. Solids 275, 7–51 (2000).

    Article  ADS  Google Scholar 

  8. Martinez, L.-M. & Angell, C. A. A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663–667 (2001).

    Article  ADS  Google Scholar 

  9. Ngai, K. L. Why the fast relaxation in the picosecond to nanosecond time range can sense the glass transition. Phil. Mag. 84, 1341–1353 (2004).

    Article  ADS  Google Scholar 

  10. Shao, J. & Angell, C. A. Proc. XVIIth International Congress on Glass, Beijing Vol. 1, 311–320 (Chinese Ceramic Society, Beijing, 1995).

    Google Scholar 

  11. Starr, F. W., Sastry, S., Douglas, J. F. & Glotzer, S. What do we learn from the local geometry of glass-forming liquids? Phys. Rev. Lett. 89, 125501 (2002).

    Article  ADS  Google Scholar 

  12. Bordat, P., Affouard, F., Descamps, M. & Ngai, K. L. Does the interaction potential determine both the fragility of a liquid and the vibrational properties of its glassy state? Phys. Rev. Lett. 93, 105502 (2004).

    Article  ADS  Google Scholar 

  13. Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).

    Article  ADS  Google Scholar 

  14. Buchenau, U. & Zorn, R. A relation between fast and slow motions in glassy and liquid selenium. Europhys. Lett. 18, 523–528 (1992).

    Article  ADS  Google Scholar 

  15. Sokolov, A. P., Rössler, E., Kisliuk, A. & Quitmann, D. Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties. Phys. Rev. Lett. 71, 2062–2065 (1993).

    Article  ADS  Google Scholar 

  16. Scopigno, T., Ruocco, G., Sette, F. & Monaco, G. Is the fragility of a liquid embedded in the properties of its glass? Science 302, 849–852 (2003).

    Article  ADS  Google Scholar 

  17. Buchenau, U. & Wischnewski, A. Fragility and compressibility at the glass transition. Phys. Rev. B 70, 092201 (2004).

    Article  ADS  Google Scholar 

  18. Novikov, V. N. & Sokolov, A. P. Poisson’s ratio and the fragility of glass-forming liquids. Nature 431, 961–963 (2004).

    Article  ADS  Google Scholar 

  19. Novikov, V. N., Ding, Y. & Sokolov, A. P. Correlation of fragility of supercooled liquids with elastic properties of glasses. Phys. Rev. E 71, 061501 (2005).

    Article  ADS  Google Scholar 

  20. Yannopoulos, S. N. & Johari, G. P. Poisson’s ratio and liquid’s fragility. Nature 442, E7–E8 (2006).

    Article  ADS  Google Scholar 

  21. Dyre, J. C. The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).

    Article  ADS  Google Scholar 

  22. Löwen, H. Melting, freezing and colloidal suspensions. Phys. Rep. 237, 249–324 (1994).

    Article  ADS  Google Scholar 

  23. Gedde, U. W. Polymer Physics (Chapman and Hall, London, 1995).

    Google Scholar 

  24. Xia, X. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. 97, 2990–2994 (2000).

    Article  ADS  Google Scholar 

  25. Bässler, H. Viscous flow in supercooled liquids analyzed in terms of transport theory for random media with energetic disorder. Phys. Rev. Lett. 58, 767–770 (1987).

    Article  ADS  Google Scholar 

  26. Ferry, J. D., Grandine, L. D. Jr & Fitzgerald, E. R. The relaxation distribution function of polyisobutylene in the transition from rubber-like to glass-like behavior. J. Appl. Phys. 24, 911–916 (1953).

    Article  ADS  Google Scholar 

  27. Monthus, C. & Bouchaud, J.-P. Models of traps and glass phenomenology. J. Phys. A 29, 3847–3869 (1996).

    Article  ADS  Google Scholar 

  28. Kröger, M. Simple models for complex nonequilibrium fluids. Phys. Rep. 390, 453–551 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  29. Boon, J. P. & Yip, S. Molecular Hydrodynamics (Dover, New York, 1980).

    Google Scholar 

  30. Glotzer, S. C. & Vogel, M. Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica. Phys. Rev. E 70, 061504 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with C. A. Angell, S. Capaccioli, G. Carini, P. G. Debenedetti, J. Dyre, A. Fontana, K. L. Ngai, G. Ruocco, F. Sciortino and S. N. Shore. A. Wischnewski is thanked for providing the DW data of silica. Computational resources by ‘Laboratorio per il Calcolo Scientifico’ (Physics Department, University of Pisa) and financial support from MIUR within the PRIN project ‘Aging, fluctuation and response in out-of-equilibrium glassy systems’ are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leporini.

Supplementary information

Supplementary Information

Simulations and Experimental data and scaling (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larini, L., Ottochian, A., De Michele, C. et al. Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers. Nature Phys 4, 42–45 (2008). https://doi.org/10.1038/nphys788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing