Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced reaction kinetics in biological cells

Abstract

The cell cytoskeleton is a striking example of an ‘active’ medium driven out-of-equilibrium by ATP hydrolysis1. Such activity has been shown to have a spectacular impact on the mechanical and rheological properties of the cellular medium2,3,4,5,6,7,8,9,10, as well as on its transport properties11,12,13,14: a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose an analytical model of transport-limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers such as vesicles. We derive analytically the average interaction time with motor proteins that optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures such as axons1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of reaction kinetics in active media, and examples of low-dimensional structures in biological cells.
Figure 2: Optimization of the reaction rate.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell (Garland, New York, 2002).

    Google Scholar 

  2. Thoumine, O. & Ott, A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell. Sci. 110, 2109–2116 (1997).

    Google Scholar 

  3. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  ADS  Google Scholar 

  4. Le Goff, L., Amblard, F. & Furst, E. M. Motor-driven dynamics in actin-myosin networks. Phys. Rev. Lett. 88, 018101 (2002).

    Article  ADS  Google Scholar 

  5. Kruse, K., Joanny, J. F., Julicher, F., Prost, J. & Sekimoto, K. Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 92, 078101 (2004).

    Article  ADS  Google Scholar 

  6. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  ADS  Google Scholar 

  7. Voituriez, R., Joanny, J. F. & Prost, J. Spontaneous flow transition in active polar gels. Europhys. Lett. 70, 404–410 (2005).

    Article  ADS  Google Scholar 

  8. Voituriez, R., Joanny, J. F. & Prost, J. Generic phase diagram of active polar films. Phys. Rev. Lett. 96, 028102 (2006).

    Article  ADS  Google Scholar 

  9. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    Article  ADS  Google Scholar 

  10. Dalhaimer, P., Discher, D. E. & Lubensky, T. C. Crosslinked actin networks show liquid crystal elastomer behaviour, including soft-mode elasticity. Nature Phys. 3, 354–360 (2007).

    Article  ADS  Google Scholar 

  11. Sheetz, M. P. & Spudich, J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303, 31–35 (1983).

    Article  ADS  Google Scholar 

  12. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  ADS  Google Scholar 

  13. Ajdari, A. Transport by active filaments. Europhys. Lett. 31, 69–74 (1995).

    Article  ADS  Google Scholar 

  14. Nedelec, F., Surrey, T. & Maggs, A. C. Dynamic concentration of motors in microtubule arrays. Phys. Rev. Lett. 86, 3192 (2001).

    Article  ADS  Google Scholar 

  15. Salman, H. et al. Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys. J. 89, 2134–2145 (2005).

    Article  ADS  Google Scholar 

  16. Huet, S., Karatekin, E., Tran, V. S., Cribier, S. & Henry, J. P. Analysis of transient behavior in complex trajectories: Application to secretory vesicle dynamics. Biophys. J. 91, 3542–3559 (2006).

    Article  ADS  Google Scholar 

  17. Shlesinger, M. F. & Klafter, J. Random-walks in liquids. J. Phys. Chem. 93, 7023–7026 (1989).

    Article  Google Scholar 

  18. Holcman, D. Modeling DNA and virus trafficking in the cell cytoplasm. J. Stat. Phys. 127, 471–494 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  19. Coppey, M., Bénichou, O., Voituriez, R. & Moreau, M. Kinetics of target site localization of a protein on DNA: A stochastic approach. Biophys. J. 87, 1640–1649 (2004).

    Article  ADS  Google Scholar 

  20. Slutsky, M. & Mirny, L. A. Kinetics of protein-DNA interaction: Facilitated target location in sequence-dependent potential. Biophys. J. 87, 4021–4035 (2004).

    Article  ADS  Google Scholar 

  21. Bénichou, O., Coppey, M., Moreau, M., Suet, P. H. & Voituriez, R. Optimal search strategies for hidden targets. Phys. Rev. Lett. 94, 198101 (2005).

    Article  ADS  Google Scholar 

  22. Lomholt, M. A., Ambjornsson, T. & Metzler, R. Optimal target search on a fast-folding polymer chain with volume exchange. Phys. Rev. Lett. 95, 260603 (2005).

    Article  ADS  Google Scholar 

  23. Bénichou, O., Loverdo, C., Moreau, M. & Voituriez, R. Bidimensional intermittent search processes: an alternative to Lévy flights strategies. Phys. Rev. E 74, 020102 (2006).

    Article  ADS  Google Scholar 

  24. Shlesinger, M. F. Mathematical physics: Search research. Nature 443, 281–282 (2006).

    Article  ADS  Google Scholar 

  25. Bénichou, O., Loverdo, C., Moreau, M. & Voituriez, R. A minimal model of intermittent search in dimension two. J. Phys. Condens. Matter 19, 065141 (2006).

    Article  ADS  Google Scholar 

  26. Eliazar, I., Koren, T. & Klafter, J. Searching circular DNA strands. J. Phys. Condens. Matter 19, 065140–065167 (2007).

    Article  ADS  Google Scholar 

  27. Kolesov, G., Wunderlich, Z., Laikova, O. N., Gelfand, M. S. & Mirny, L. A. How gene order is influenced by the biophysics of transcription regulation. Proc. Natl Acad. Sci. 104, 13948–13953 (2007).

    Article  ADS  Google Scholar 

  28. Berg, O. & Blomberg, C. Association kinetics with coupled diffusional flows. Special application to the lac repressor-operator system. Biophys. Chem. 4, 367–381 (1976).

    Article  Google Scholar 

  29. Redner, S. A Guide to First- Passage Processes (Cambridge Univ. Press, Cambridge, 2001); errata: <http://physics.bu.edu/~redner/>.

    Book  Google Scholar 

  30. Condamin, S., Bénichou, O., Tejedor, V., Voituriez, R. & Klafter, J. First-passage times in complex scale-invariant media. Nature 450, 77–80 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to R. Voituriez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loverdo, C., Bénichou, O., Moreau, M. et al. Enhanced reaction kinetics in biological cells. Nature Phys 4, 134–137 (2008). https://doi.org/10.1038/nphys830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing