Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry

Abstract

High-speed liquid jets and sprays are complex multiphase flow phenomena with many important industrial applications1,2. Great efforts have been devoted to understand their dynamics since the pioneering work of Rayleigh on low-speed jets3,4. Attempts to use conventional laser optical techniques to provide information about the internal structure of high-speed jets have been unsuccessful owing to the multiple scattering by droplets and interfaces, and the high density of the jet near the nozzle exit5. Focused-X-ray-beam absorption measurements could provide only average quantitative density distributions using repeated imaging6. Here, we report a novel approach on the basis of ultrafast synchrotron-X-ray full-field phase-contrast imaging7. As illustrated in our case study, this technique reveals, for the first time, instantaneous velocity and internal structure of optically dense sprays with a combined unprecedented spatial and time resolution. This technique has tremendous potential for the study of transient phenomenon dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the experimental set-up.
Figure 2: X-ray versus visible-light snapshots of two different types of spray.
Figure 3: Velocity measurements by autocorrelation.
Figure 4: Dynamics of the velocity field.

Similar content being viewed by others

References

  1. Reitz, R. D. & Bracco, F. V. The Encyclopedia of Fluid Mechanics Vol. 3, 233–249 (Gulf Publishing, New Jersey, 1986).

    Google Scholar 

  2. Reitz, R. D. & Bracco, F. V. Mechanism of atomization of a liquid jet. Phys. Fluids 25, 1730–1742 (1982).

    Article  ADS  Google Scholar 

  3. Lin, S. P. & Reitz, R. D. Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85–105 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. Rayleigh, W. S. On the stability of jets. Proc. Lond. Math. Soc. 4, 10–13 (1878).

    MathSciNet  Google Scholar 

  5. Chigier, N. & Reitz, R. D. in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena Vol. 1 (ed. Kuo, K. K.) 109–135 (AIAA, Reston, 1996).

    Google Scholar 

  6. MacPhee, A. G. et al. X-ray imaging of shock waves generated by high-pressure fuel sprays. Science 295, 1261–1263 (2002).

    Article  ADS  Google Scholar 

  7. Wilkins, S. W., Gureyev, T. E., Gao, D., Pogany, A. & Stevenson, A. W. Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335–338 (1996).

    Article  ADS  Google Scholar 

  8. Milnor, W. R. Hemodynamics 2nd edn, 5 (Williams & Wilkins, Baltimore, 1989).

    Google Scholar 

  9. Wang, Y. J. et al. Quantitative x-ray phase-contrast imaging of air-assisted water sprays with high Weber numbers. Appl. Phys. Lett. 89, 151913 (2006).

    Article  ADS  Google Scholar 

  10. Brennen, C. E. Fundamentals of Multiphase Flow 1–2 (Cambridge Univ. Press, New York, 2005).

    Book  Google Scholar 

  11. Royer, J. R. et al. Formation of granular jets observed by high-speed X-ray radiography. Nature Phys. 1, 164–167 (2005).

    Article  ADS  Google Scholar 

  12. Xu, L., Zhang, W. W. & Nagel, S. R. Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505 (2005).

    Article  ADS  Google Scholar 

  13. Whitesides, G. W. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  ADS  Google Scholar 

  14. Squires, T. M. & Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  ADS  Google Scholar 

  15. Donnely, R. J. & Glaberson, W. Experiment on the capillary instability of a liquid jet. Proc. R. Soc. Lond. A 290, 547–556 (1965).

    ADS  Google Scholar 

  16. Schweitzer, P. H. Mechanism of disintegration of liquid jets. J. Appl. Phys. 8, 513–521 (1937).

    Article  ADS  Google Scholar 

  17. Bergwerk, W. Flow pattern in diesel nozzle spray holes. Proc. Inst. Mech. Eng. 173, 655–660 (1959).

    Article  Google Scholar 

  18. Rupe, J. H. On the dynamic characteristics of free liquid jets and a partial correlation with orifice geometry. NASA JPL Technical Report No. 32, 207–240 (1962).

  19. Voges, H. et al. Proceedings of the 5th Conference of ILASS-Asia, Annual Conference on Liquid Atomization and Spray Systems 35–42 (2000).

    Google Scholar 

  20. Friedlander, S. K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics 2nd edn, 136 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  21. Meyers, J. F. & Komine, H. in Laser Anemometry-Advances and Applications Vol. 1 (eds Dybbs, A. & Ghorashi, B.) 289–296 (ASME Publications, Cleveland, 1991).

    Google Scholar 

  22. Im, K.-S. et al. Particle tracking velocimetry using fast x-ray phase-contrast imaging. Appl. Phys. Lett. 90, 091919 (2007).

    Article  ADS  Google Scholar 

  23. Reitz, R. D. Modeling atomization process in high-pressure vaporizing sprays. Atomization Spray Technol. 3, 309–337 (1987).

    ADS  Google Scholar 

  24. Xu, M. et al. Soft spray formation of a low-pressure, high-turbulence fuel injector for direct-injection gasoline engines. SAE Trans. J. Fuels Lubricants 111, 1452–1466 (2002).

    Google Scholar 

  25. Zhao, F. Q., Harrington, D. L. & Lai, M. C. Automotive Gasoline Direct-Injection Engines 65 (Society of Automotive Engineers, Warrendale, April 2002).

    Google Scholar 

  26. Liu, X. et al. Quantitative characterization of near-field fuel sprays by multi-orifice direct injection using ultrafast x-tomography technique. SAE Trans. J. Eng. 115, 576–583 (2006).

    ADS  Google Scholar 

  27. Lasheras, J. C. & Hopfinger, E. J. Liquid jet instability and atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32, 275–308 (2000).

    Article  ADS  Google Scholar 

  28. Sedarsky, D. L., Paciaroni, M. E., Linne, M. A., Gord, J. R. & Meyer, T. R. Velocity imaging for the liquid–gas interface in the near field of an atomizing spray: Proof of concept. Opt. Lett. 31, 906–908 (2006).

    Article  ADS  Google Scholar 

  29. Borland, M. et al. APS storage ring parameters. http://aps.anl.gov/Facility/Storage_Ring_Parameters (2007).

Download references

Acknowledgements

The use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357, and Argonne National Laboratory Director’s Competitive Grant (LDRD) 2006-023-N0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Fezzaa.

Supplementary information

Supplementary Information

Supplementary Description: Movie single and Movie dual (PDF 11 kb)

Supplementary Information

Supplementary Movie 1 (WMV 3517 kb)

Supplementary Information

Supplementary Movie 2 (WMV 3134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Liu, X., Im, KS. et al. Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry. Nature Phys 4, 305–309 (2008). https://doi.org/10.1038/nphys840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing