Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optically mapping the electronic structure of coupled quantum dots

Abstract

In a network of quantum dots1 embedded in a semiconductor structure, no two are the same, and so their individual and collective properties must be measured after fabrication. Here, we demonstrate a ‘level anti-crossing spectroscopy’ (LACS) technique in which the ladder of orbital energy levels of one quantum dot is used to probe that of a nearby quantum dot. This optics-based technique can be applied in situ to a cluster of tunnel-coupled dots, in configurations similar to that predicted for new photonic or quantum information technologies2,3,4,5. Although the lowest energy levels of a quantum dot are arranged approximately in a shell structure6,7,8,9,10, asymmetries or intrinsic physics—such as spin–orbit coupling for holes—may alter level splittings significantly11. We use LACS on a diatomic molecule composed of vertically stacked InAs/GaAs quantum dots and obtain the excited-state level diagram of a hole with and without extra carriers. The observation of excited molecular orbitals, including σ and π bonding states, provides fresh opportunities in solid-state molecular physics. Combined with atomic-resolution microscopy and electronic-structure theory for typical dots, the LACS technique could also enable ‘reverse engineering’ of the level structure and the corresponding optical response12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of LACS.
Figure 2: Statistics of the energy-level structure.
Figure 3: XSTM study of QDMs.
Figure 4: Versatility of LACS.
Figure 5: Calculated spectrum.

Similar content being viewed by others

References

  1. Stangl, J., Holý, V. & Baur, G. Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725–783 (2004).

    Article  ADS  Google Scholar 

  2. Biolatti, E., Iotti, R. C., Zanardi, P. & Rossi, F. Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett. 85, 5647–5650 (2000).

    Article  ADS  Google Scholar 

  3. Unold, T., Mueller, K., Lienau, C., Elsaesser, T. & Wieck, A. D. Optical control of excitons in a pair of quantum dots coupled by the dipole–dipole interaction. Phys. Rev. Lett. 94, 137404 (2005).

    Article  ADS  Google Scholar 

  4. Emary, C. & Sham, L. J. Optically controlled logic gates for two spin qubits in vertically coupled quantum dots. Phys. Rev. B 75, 125317 (2007).

    Article  ADS  Google Scholar 

  5. Imamoǧlu, A. et al. Coupling quantum dot spins to a photonic crystal nanocavity. J. Appl. Phys. 101, 081602 (2007).

    Article  ADS  Google Scholar 

  6. Jacac, L., Hawrylak, P. & Wójs, A. Quantum Dots (Springer, Berlin, 1998).

    Book  Google Scholar 

  7. Bimberg, D., Grundmann, M. & Ledentsov, N. N. Quantum Dot Heterostructures (Wiley, New York, 1998).

    Google Scholar 

  8. Bayer, M., Stern, O., Hawrylak, P., Fafard, S. & Forchel, A. Hidden symmetries in the energy levels of excitonic ‘artificial atoms’. Nature 405, 923–926 (2000).

    Article  ADS  Google Scholar 

  9. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P. & Petroff, P. M. Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Lett. 73, 2252–2255 (1994).

    Article  ADS  Google Scholar 

  10. Blokland, J. H. et al. Hole levels in InAs self-assembled quantum dots. Phys. Rev. B 75, 233305 (2007).

    Article  ADS  Google Scholar 

  11. Narvaez, G. A. & Zunger, A. Calculation of conduction-to-conduction and valence-to-valence transitions between bound states in (In,Ga)As/GaAs quantum dots. Phys. Rev. B 75, 085306 (2007).

    Article  ADS  Google Scholar 

  12. Ediger, M. et al. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nature Phys. 3, 774–779 (2007).

    Article  ADS  Google Scholar 

  13. Stinaff, E. A. et al. Optical signatures of coupled quantum dots. Science 311, 636–639 (2006).

    Article  ADS  Google Scholar 

  14. Bracker, A. S. et al. Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules. Appl. Phys. Lett. 89, 233110 (2006).

    Article  ADS  Google Scholar 

  15. Scheibner, M. et al. Spin fine structure of optically excited quantum dot molecules. Phys. Rev. B 75, 245318 (2007).

    Article  ADS  Google Scholar 

  16. Scheibner, M. et al. Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs–GaAs quantum dot pairs. Phys. Rev. Lett. 99, 197402 (2007).

    Article  ADS  Google Scholar 

  17. Krenner, H. J. et al. Direct observation of controlled coupling in an individual quantum dot molecule. Phys. Rev. Lett. 94, 057402 (2005).

    Article  ADS  Google Scholar 

  18. Ortner, G. et al. Control of vertically coupled InGaAs/GaAs quantum dots with electric field. Phys. Rev. Lett. 94, 157401 (2005).

    Article  ADS  Google Scholar 

  19. Krenner, H. J. et al. Optically probing spin and charge interactions in a tunable artificial molecule. Phys. Rev. Lett. 97, 076403 (2006).

    Article  ADS  Google Scholar 

  20. Szafran, B., Peeters, F. M. & Bednarek, S. Stark effect on the exciton spectra of vertically coupled quantum dots: Horizontal field orientation and nonaligned dots. Phys. Rev. B 75, 115303 (2007).

    Article  ADS  Google Scholar 

  21. Degani, M. H. & Maialle, M. Z. Resonances of trion states in quantum dot molecules tuned by an electric field. Phys. Rev. B 75, 115322 (2007).

    Article  ADS  Google Scholar 

  22. Bester, G. & Zunger, A. Electric field control and optical signature of entanglement in quantum dot molecules. Phys. Rev. B 72, 165334 (2005).

    Article  ADS  Google Scholar 

  23. Beirne, G. J. et al. Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field. Phys. Rev. Lett. 96, 137401 (2006).

    Article  ADS  Google Scholar 

  24. Xie, Q., Madhukar, A., Chen, P. & Kobayashi, N. P. Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75, 2542–2545 (1995).

    Article  ADS  Google Scholar 

  25. Bruls, D. M. et al. Stacked low-growth-rate InAs quantum dots studied at the atomic level by cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 82, 3758–3760 (2003).

    Article  ADS  Google Scholar 

  26. Solomon, G. S., Komarov, S., Harris, J. S. Jr & Yamamoto, Y. Increased size uniformity through vertical quantum dot columns. J. Cryst. Growth 175–176, 707–712 (1997).

    Article  ADS  Google Scholar 

  27. Jaskólski, W., Zielinski, M., Bryant, G. W. & Aizpurua, J. Strain effects on the electronic structure of strongly coupled self-assembled InAs/GaAs quantum dots: Tight-binding approach. Phys. Rev. B 74, 195339 (2006).

    Article  ADS  Google Scholar 

  28. Garcia, J. M. et al. Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Appl. Phys. Lett. 71, 2014–2016 (1997).

    Article  ADS  Google Scholar 

  29. Wasilewski, Z. R., Fafard, S. & McCaffrey, J. P. Size and shape engineering of vertically stacked self-assembled quantum dots. J. Cryst. Growth 201–202, 1131–1135 (1999).

    Article  ADS  Google Scholar 

  30. Nosho, B. Z., Barvosa-Carter, W., Yang, M. J., Bennett, B. R. & Whitman, L. J. Interpreting interfacial structure in cross-sectional STM images of III–V semiconductor heterostructures. Surf. Sci. 465, 361–371 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge partial funding by NSA/ARO and ONR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Scheibner or D. Gammon.

Supplementary information

Supplementary Information

Supplementary Figure 1–2 and Tables 1–2 (PDF 566 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibner, M., Yakes, M., Bracker, A. et al. Optically mapping the electronic structure of coupled quantum dots. Nature Phys 4, 291–295 (2008). https://doi.org/10.1038/nphys882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing