Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing vortex-core dynamics using current-induced resonant excitation of a trapped domain wall

Abstract

Magnetic domain walls in soft magnetic nanowires often exhibit a structure in which the magnetization curls within the plane of the nanowire around a singular point with out-of-plane magnetization, the vortex core1,2. Although the core is a small object, with a diameter of only 10 nm in permalloy2, its motion controls the dynamics of the entire wall, which can be several hundred nanometres in size. In particular, when a domain wall trapped at a pinning site is driven out of equilibrium by either a magnetic field or a spin-polarized current, the vortex core gyrates around its equilibrium position. The sense of gyration is determined by the polarity of the core3,4,5,6,7. Here, we show that spin-polarized a.c. currents can resonantly excite a vortex domain wall trapped at a notched site in a nanowire. The shape and magnitude of the resonance, measured from the nanowire’s resistance, reveal both the elliptical trajectory of the vortex core as well as its polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic images of four possible vortex domain wall structures.
Figure 2: a.c.-current resonant excitation of vortex domain walls.
Figure 3: Polarity dependence of resonant peak shape and position.
Figure 4: Determination of domain wall pinning potential from field dependence of resonance peak position.

Similar content being viewed by others

References

  1. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    Article  ADS  Google Scholar 

  2. Wachowiak, A. et al. Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002).

    Article  ADS  Google Scholar 

  3. Guslienko, K. Y. et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037–8039 (2002).

    Article  ADS  Google Scholar 

  4. Choe, S. B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

    Article  ADS  Google Scholar 

  5. Buchanan, K. S. et al. Soliton-pair dynamics in patterned ferromagnetic ellipses. Nature Phys. 1, 172–176 (2005).

    Article  ADS  Google Scholar 

  6. Novosad, V. et al. Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B 72, 024455 (2005).

    Article  ADS  Google Scholar 

  7. Shibata, J., Nakatani, Y., Tatara, G., Kohno, H. & Otani, Y. Current-induced magnetic vortex motion by spin-transfer torque. Phys. Rev. B 73, 020403 (2006).

    Article  ADS  Google Scholar 

  8. Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    Article  ADS  Google Scholar 

  9. Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nature Mater. 6, 270–273 (2007).

    Article  ADS  Google Scholar 

  10. Grollier, J., Costache, M. V., van der Wal, C. H. & van Wees, B. J. Microwave spectroscopy on magnetization reversal dynamics of nanomagnets with electronic detection. J. Appl. Phys. 100, 024316 (2006).

    Article  ADS  Google Scholar 

  11. Sankey, J. C. et al. Spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Phys. Rev. Lett. 96, 227601 (2006).

    Article  ADS  Google Scholar 

  12. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  ADS  Google Scholar 

  13. Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H. & Ono, T. Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett. 97, 107204 (2006).

    Article  ADS  Google Scholar 

  14. Bedau, D. et al. Detection of current-induced resonance of geometrically confined domain walls. Phys. Rev. Lett. 99, 146601 (2007).

    Article  ADS  Google Scholar 

  15. Berger, L. Possible existence of a Josephson effect in ferromagnets. Phys. Rev. B 33, 1572–1578 (1986).

    Article  ADS  Google Scholar 

  16. Berger, L. Exchange interaction between electric current and magnetic domain wall containing Bloch lines. J. Appl. Phys. 63, 1663–1669 (1988).

    Article  ADS  Google Scholar 

  17. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  ADS  Google Scholar 

  18. He, J., Li, Z. & Zhang, S. Current-driven vortex domain wall dynamics by micromagnetic simulations. Phys. Rev. B 73, 184408 (2006).

    Article  ADS  Google Scholar 

  19. Thomas, L. et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443, 197–200 (2006).

    Article  ADS  Google Scholar 

  20. Thomas, L. et al. Resonant amplification of magnetic domain-wall motion by a train of current pulses. Science 315, 1553–1556 (2007).

    Article  ADS  Google Scholar 

  21. Nozaki, T. et al. Substantial reduction in the depinning field of vortex domain walls triggered by spin-transfer induced resonance. Appl. Phys. Lett. 91, 082502 (2007).

    Article  ADS  Google Scholar 

  22. Hung, C. Y., Berger, L. & Shih, C. Y. Observation of a current-induced force on Bloch lines in Ni–Fe thin films. J. Appl. Phys. 67, 5941–5943 (1990).

    Article  ADS  Google Scholar 

  23. LLG Micromagnetic Simulator <http://llgmicro.home.mindspring.com> (1997).

  24. Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).

    Article  ADS  Google Scholar 

  25. Kent, A. D., Yu, J., Rüdiger, U. & Parkin, S. S. P. Domain wall resistivity in epitaxial thin film microstructures. J. Phys. Condens. Matter 13, R461–R488 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank X. Jiang for helpful discussions and sample fabrication and B. Hughes and K. Roche for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart S. P. Parkin.

Supplementary information

Supplementary Information

Supplementary Information and Supplementary Figures 1–4 (PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriya, R., Thomas, L., Hayashi, M. et al. Probing vortex-core dynamics using current-induced resonant excitation of a trapped domain wall. Nature Phys 4, 368–372 (2008). https://doi.org/10.1038/nphys936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing