Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Towards fault-tolerant quantum computing with trapped ions

Abstract

Today, ion traps are among the most promising physical systems for constructing a quantum device harnessing the computing power inherent in the laws of quantum physics1,2. For the implementation of arbitrary operations, a quantum computer requires a universal set of quantum logic gates. As in classical models of computation, quantum error correction techniques3,4 enable rectification of small imperfections in gate operations, thus enabling perfect computation in the presence of noise. For fault-tolerant computation5, it is believed that error thresholds ranging between 10−4 and 10−2 will be required—depending on the noise model and the computational overhead for realizing the quantum gates6,7,8—but so far all experimental implementations have fallen short of these requirements. Here, we report on a Mølmer–Sørensen-type gate operation9,10 entangling ions with a fidelity of 99.3(1)%. The gate is carried out on a pair of qubits encoded in two trapped calcium ions using an amplitude-modulated laser beam interacting with both ions at the same time. A robust gate operation, mapping separable states onto maximally entangled states is achieved by adiabatically switching the laser–ion coupling on and off. We analyse the performance of a single gate and concatenations of up to 21 gate operations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gate mechanism.
Figure 2: High-fidelity gate operation.
Figure 3: Entanglement and disentanglement dynamics of the Mølmer–Sørensen interaction.
Figure 4: Multiple gate operations.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  2. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    Article  ADS  Google Scholar 

  3. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    Article  ADS  Google Scholar 

  4. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  5. Shor, P. W. 37th Symposium on Foundations of Computing 56–65 (IEEE Computer Society Press, Washington DC, 1996).

    Google Scholar 

  6. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    Article  ADS  Google Scholar 

  7. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    Article  ADS  Google Scholar 

  8. Reichardt, B. W. Improved ancilla preparation scheme increases fault-tolerant threshold. Preprint at <http://arxiv.org/abs/quant-ph/0406025v1> (2004).

  9. Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999).

    Article  ADS  Google Scholar 

  10. Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000).

    Article  ADS  Google Scholar 

  11. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  ADS  Google Scholar 

  12. Schmidt-Kaler, F. et al. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003).

    Article  ADS  Google Scholar 

  13. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

    Article  ADS  Google Scholar 

  14. Haljan, P. C. et al. Entanglement of trapped-ion clock states. Phys. Rev. A 72, 062316 (2005).

    Article  ADS  Google Scholar 

  15. Home, J. P. et al. Deterministic entanglement and tomography of ion spin qubits. New J. Phys. 8, 188 (2006).

    Article  ADS  Google Scholar 

  16. Riebe, M. et al. Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006).

    Article  ADS  Google Scholar 

  17. Milburn, G. J., Schneider, S. & James, D. F. V. Ion trap quantum computing with warm ions. Fortschr. Phys. 48, 801–810 (2000).

    Article  Google Scholar 

  18. Solano, E., de Matos Filho, R. L. & Zagury, N. Deterministic Bell states and measurement of the motional state of two trapped ions. Phys. Rev. A 59, R2539–R2543 (1999).

    Article  ADS  Google Scholar 

  19. Ozeri, R. et al. Errors in trapped-ion quantum gates due to spontaneous photon scattering. Phys. Rev. A 75, 042329 (2007).

    Article  ADS  Google Scholar 

  20. Roos, C. F. Ion trap quantum gates with amplitude-modulated laser beams. New J. Phys. 10, 013002 (2008).

    Article  Google Scholar 

  21. Benhelm, J. et al. Measurement of the hyperfine structure of the S1/2–D5/2 transition in 43Ca+. Phys. Rev. A 75, 032506 (2007).

    Article  ADS  Google Scholar 

  22. Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006).

    Article  ADS  Google Scholar 

  23. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    Article  ADS  Google Scholar 

  24. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article  ADS  Google Scholar 

  25. Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    Article  ADS  Google Scholar 

  26. Reichle, R. et al. Experimental purification of two-atom entanglement. Nature 443, 838–841 (2006).

    Article  ADS  Google Scholar 

  27. Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2004).

    Article  ADS  Google Scholar 

  28. Häffner, H. et al. Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor. Phys. Rev. Lett. 90, 143602 (2003).

    Article  ADS  Google Scholar 

  29. Leibfried, D., Knill, E., Ospelkaus, C. & Wineland, D. J. Transport quantum logic gates for trapped ions. Phys. Rev. A 76, 032324 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the European network SCALA and the Disruptive Technology Office and the Institut für Quanteninformation GmbH. We thank R. Gerritsma and F. Zähringer for help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian F. Roos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benhelm, J., Kirchmair, G., Roos, C. et al. Towards fault-tolerant quantum computing with trapped ions. Nature Phys 4, 463–466 (2008). https://doi.org/10.1038/nphys961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing