Abstract
Polar molecules have bright prospects for novel quantum gases with long-range and anisotropic interactions1, and could find uses in quantum information science2 and in precision measurements3,4,5. However, high-density clouds of ultracold polar molecules have so far not been produced. Here, we report a key step towards this goal. We start from an ultracold dense gas of loosely bound 40K87Rb Feshbach molecules6,7 with typical binding energies of a few hundred kilohertz, and coherently transfer these molecules in a single transfer step into a vibrational level of the ground-state molecular potential bound by more than 10 GHz. Starting with a single initial state prepared with Feshbach association8, we achieve a transfer efficiency of 84%. Given favourable Franck–Condon factors9,10, the presented technique can be extended to access much more deeply bound vibrational levels and those exhibiting a significant dipole moment.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Santos, L., Shlyapnikov, G. V., Zoller, P. & Lewenstein, M. Bose–Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1794 (2000).
DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).
Sandars, P. G. H. Measurability of the proton electric dipole moment. Phys. Rev. Lett. 19, 1396–1398 (1967).
Kozlov, M. G. & Labzowsky, L. N. Parity violation effects in diatomics. J. Phys. B 28, 1933–1961 (1995).
Hudson, E. R., Lewandowski, H. J., Sawyer, B. C. & Ye, J. Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys. Rev. Lett. 96, 143004 (2006).
Zirbel, J. J. et al. Collisional stability of fermionic Feshbach molecules. Phys. Rev. Lett. 100, 143201 (2008).
Zirbel, J. J. et al. Heteronuclear molecules in an optical dipole trap. Preprint at <http://arxiv.org/abs/0712.3889> (2007).
Kohler, T., Goral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006).
Sage, J. M., Sainis, S., Bergeman, T. & DeMille, D. Optical production of ultracold polar molecules. Phys. Rev. Lett. 94, 203001 (2005).
Stwalley, W. C. Efficient conversion of ultracold Feshbach-resonance-related polar molecules into ground state (X1Σ+v=0,J=0) molecules. Eur. Phys. J. D 31, 221–225 (2004).
Weinstein, J. D., deCarvalho, R., Guillet, T., Friedrich, B. & Doyle, J. M. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148–150 (1998).
Bethlem, H. L., Berden, G. & Meijer, G. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).
Sawyer, B. C. et al. Magnetoelectrostatic trapping of ground state OH molecules. Phys. Rev. Lett. 98, 253002 (2007).
Rangwala, S. A., Junglen, T., Rieger, T., Pinkse, P. W. & Rempe, G. Continuous source of translationally cold dipolar molecules. Phys. Rev. A 67, 043406 (2003).
Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).
Wang, D. et al. Photoassociative production and trapping of ultracold KRb molecules. Phys. Rev. Lett. 93, 243005 (2004).
Wynar, R., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose–Einstein condensate. Science 287, 1016–1019 (2000).
Thalhammer, G., Theis, M., Winkler, K., Grimm, R. & Hecker Denschlag, J. Inducing an optical Feshbach resonance via stimulated Raman coupling. Phys. Rev. A 71, 033403 (2005).
Ospelkaus, C. et al. Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97, 120402 (2006).
Papp, S. B. & Wieman, C. E. Observation of heteronuclear Feshbach molecules from a 85Rb87Rb gas. Phys. Rev. Lett. 97, 180404 (2006).
Pe’er, A., Shapiro, E. A., Stowe, M. C., Shapiro, M. & Ye, J. Precise control of molecular dynamics with a femtosecond frequency comb. Phys. Rev. Lett. 98, 113004 (2007).
Winkler, K. et al. Coherent optical transfer of Feshbach molecules to a lower vibrational state. Phys. Rev. Lett. 98, 043201 (2007).
Lang, F. et al. Cruising through molecular bound-state manifolds with radiofrequency. Nature Phys. 4, 223–226 (2008).
Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).
Pashov, A. et al. Coupling of the X1Σ+ and a3Σ+ states of KRb. Phys. Rev. A 76, 022511 (2007).
Arimondo, E. & Orriols, G. Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping. Lett. Nuovo Cimento 17, 333–338 (1976).
Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).
Courteille, Ph., Freeland, R. S., Heinzen, D. J., van Abeelen, F. A. & Verhaar, B. J. Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett. 81, 69–72 (1998).
Laburthe Tolra, B. et al. Controlling the formation of cold molecules via a Feshbach resonance. Europhys. Lett. 64, 171–177 (2003).
Kotochigova, S., Julienne, P. S. & Tiesinga, E. Ab initio calculation of the KRb dipole moments. Phys. Rev. A 68, 022501 (2003).
Acknowledgements
We acknowledge financial support from NIST, NSF and DOE. K.-K.N. and B.N. acknowledge support from the NSF, S.O. from the Alexander-von-Humboldt Foundation and P.S.J. from the ONR. We thank D. Wang for stimulating discussions and C. Ospelkaus for critical reading of the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Ospelkaus, S., Pe’er, A., Ni, KK. et al. Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nature Phys 4, 622–626 (2008). https://doi.org/10.1038/nphys997
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys997
This article is cited by
-
New frontiers for quantum gases of polar molecules
Nature Physics (2017)
-
Two-component dipolar Bose-Einstein condensate in concentrically coupled annular traps
Scientific Reports (2015)
-
Collective Modes in a Bilayer Dipolar Fermi Gas and the Dissipationless Drag Effect
Journal of Low Temperature Physics (2013)
-
Bound Chains of Tilted Dipoles in Layered Systems
Few-Body Systems (2013)
-
Thermodynamics of Dipolar Chain Systems
Few-Body Systems (2013)


