Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient state transfer in an ultracold dense gas of heteronuclear molecules

Abstract

Polar molecules have bright prospects for novel quantum gases with long-range and anisotropic interactions1, and could find uses in quantum information science2 and in precision measurements3,4,5. However, high-density clouds of ultracold polar molecules have so far not been produced. Here, we report a key step towards this goal. We start from an ultracold dense gas of loosely bound 40K87Rb Feshbach molecules6,7 with typical binding energies of a few hundred kilohertz, and coherently transfer these molecules in a single transfer step into a vibrational level of the ground-state molecular potential bound by more than 10 GHz. Starting with a single initial state prepared with Feshbach association8, we achieve a transfer efficiency of 84%. Given favourable Franck–Condon factors9,10, the presented technique can be extended to access much more deeply bound vibrational levels and those exhibiting a significant dipole moment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the STIRAP scheme.
Figure 2: Dark resonance in the molecular system.
Figure 3: Time evolution of the coherent two-photon transfer.
Figure 4: STIRAP line shape.
Figure 5: Lifetime of the v=−3 molecules.

Similar content being viewed by others

References

  1. Santos, L., Shlyapnikov, G. V., Zoller, P. & Lewenstein, M. Bose–Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1794 (2000).

    Article  ADS  Google Scholar 

  2. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  Google Scholar 

  3. Sandars, P. G. H. Measurability of the proton electric dipole moment. Phys. Rev. Lett. 19, 1396–1398 (1967).

    Article  ADS  Google Scholar 

  4. Kozlov, M. G. & Labzowsky, L. N. Parity violation effects in diatomics. J. Phys. B 28, 1933–1961 (1995).

    Article  ADS  Google Scholar 

  5. Hudson, E. R., Lewandowski, H. J., Sawyer, B. C. & Ye, J. Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys. Rev. Lett. 96, 143004 (2006).

    Article  ADS  Google Scholar 

  6. Zirbel, J. J. et al. Collisional stability of fermionic Feshbach molecules. Phys. Rev. Lett. 100, 143201 (2008).

    Article  ADS  Google Scholar 

  7. Zirbel, J. J. et al. Heteronuclear molecules in an optical dipole trap. Preprint at <http://arxiv.org/abs/0712.3889> (2007).

  8. Kohler, T., Goral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006).

    Article  ADS  Google Scholar 

  9. Sage, J. M., Sainis, S., Bergeman, T. & DeMille, D. Optical production of ultracold polar molecules. Phys. Rev. Lett. 94, 203001 (2005).

    Article  ADS  Google Scholar 

  10. Stwalley, W. C. Efficient conversion of ultracold Feshbach-resonance-related polar molecules into ground state (X1Σ+v=0,J=0) molecules. Eur. Phys. J. D 31, 221–225 (2004).

    Article  ADS  Google Scholar 

  11. Weinstein, J. D., deCarvalho, R., Guillet, T., Friedrich, B. & Doyle, J. M. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148–150 (1998).

    Article  ADS  Google Scholar 

  12. Bethlem, H. L., Berden, G. & Meijer, G. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).

    Article  ADS  Google Scholar 

  13. Sawyer, B. C. et al. Magnetoelectrostatic trapping of ground state OH molecules. Phys. Rev. Lett. 98, 253002 (2007).

    Article  ADS  Google Scholar 

  14. Rangwala, S. A., Junglen, T., Rieger, T., Pinkse, P. W. & Rempe, G. Continuous source of translationally cold dipolar molecules. Phys. Rev. A 67, 043406 (2003).

    Article  ADS  Google Scholar 

  15. Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    Article  ADS  Google Scholar 

  16. Wang, D. et al. Photoassociative production and trapping of ultracold KRb molecules. Phys. Rev. Lett. 93, 243005 (2004).

    Article  ADS  Google Scholar 

  17. Wynar, R., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose–Einstein condensate. Science 287, 1016–1019 (2000).

    Article  ADS  Google Scholar 

  18. Thalhammer, G., Theis, M., Winkler, K., Grimm, R. & Hecker Denschlag, J. Inducing an optical Feshbach resonance via stimulated Raman coupling. Phys. Rev. A 71, 033403 (2005).

    Article  ADS  Google Scholar 

  19. Ospelkaus, C. et al. Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97, 120402 (2006).

    Article  ADS  Google Scholar 

  20. Papp, S. B. & Wieman, C. E. Observation of heteronuclear Feshbach molecules from a 85Rb87Rb gas. Phys. Rev. Lett. 97, 180404 (2006).

    Article  ADS  Google Scholar 

  21. Pe’er, A., Shapiro, E. A., Stowe, M. C., Shapiro, M. & Ye, J. Precise control of molecular dynamics with a femtosecond frequency comb. Phys. Rev. Lett. 98, 113004 (2007).

    Article  ADS  Google Scholar 

  22. Winkler, K. et al. Coherent optical transfer of Feshbach molecules to a lower vibrational state. Phys. Rev. Lett. 98, 043201 (2007).

    Article  ADS  Google Scholar 

  23. Lang, F. et al. Cruising through molecular bound-state manifolds with radiofrequency. Nature Phys. 4, 223–226 (2008).

    Article  ADS  Google Scholar 

  24. Bergmann, K., Theuer, H. & Shore, B. W. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

    Article  ADS  Google Scholar 

  25. Pashov, A. et al. Coupling of the X1Σ+ and a3Σ+ states of KRb. Phys. Rev. A 76, 022511 (2007).

    Article  ADS  Google Scholar 

  26. Arimondo, E. & Orriols, G. Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping. Lett. Nuovo Cimento 17, 333–338 (1976).

    Article  ADS  Google Scholar 

  27. Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  28. Courteille, Ph., Freeland, R. S., Heinzen, D. J., van Abeelen, F. A. & Verhaar, B. J. Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett. 81, 69–72 (1998).

    Article  ADS  Google Scholar 

  29. Laburthe Tolra, B. et al. Controlling the formation of cold molecules via a Feshbach resonance. Europhys. Lett. 64, 171–177 (2003).

    Article  ADS  Google Scholar 

  30. Kotochigova, S., Julienne, P. S. & Tiesinga, E. Ab initio calculation of the KRb dipole moments. Phys. Rev. A 68, 022501 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from NIST, NSF and DOE. K.-K.N. and B.N. acknowledge support from the NSF, S.O. from the Alexander-von-Humboldt Foundation and P.S.J. from the ONR. We thank D. Wang for stimulating discussions and C. Ospelkaus for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Ye or D. S. Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ospelkaus, S., Pe’er, A., Ni, KK. et al. Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nature Phys 4, 622–626 (2008). https://doi.org/10.1038/nphys997

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing