Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system

Abstract

Incorporation of a selectable marker gene in the plastid genome is essential to uniformly alter the thousands of genome copies in a tobacco cell. When transformation is accomplished, however, the marker gene becomes undesirable. Here we describe plastid transformation vectors, the method of plastid transformation using tobacco leaves and alternative protocols for marker gene excision with the P1 bacteriophage Cre-loxP site-specific recombination system. Plastid vectors carry a marker gene flanked with directly oriented loxP sites and a gene of interest, which are introduced into plastids by the biolistic process. The transforming DNA integrates into the plastid genome by homologous recombination via plastid targeting sequences. Marker gene excision is accomplished by a plastid-targeted Cre protein expressed from a nuclear gene. Expression may be from an integrated gene introduced by Agrobacterium transformation (Transformation Protocol), by pollination (Pollination Protocol) or from a transient, non-integrated T-DNA (Transient Protocol). Transplastomic plants are obtained in about 3 months, yielding seed after 2 months. The time required to remove the plastid marker and nuclear genes and to obtain seed takes 10–16 months, depending on which protocol is used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transformation and regeneration of transplastomic plants.
Figure 2: Plastid loxP vectors for marker gene excision.
Figure 3: Approaches for plastid marker gene excision.

Similar content being viewed by others

References

  1. Maliga, P. Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55, 289–313 (2004).

    Article  CAS  Google Scholar 

  2. Bock, R. Transgenic plastids in basic research and plant biotechnology. J. Mol. Biol. 312, 425–438 (2001).

    Article  CAS  Google Scholar 

  3. Corneille, S., Lutz, K., Svab, Z. & Maliga, P. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 72, 171–178 (2001).

    Article  Google Scholar 

  4. Lutz, K.A., Bosacchi, M.H. & Maliga, P. Plastid marker gene excision by transiently expressed CRE recombinase. Plant J. 45, 447–456 (2006).

    Article  CAS  Google Scholar 

  5. Svab, Z. & Maliga, P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917 (1993).

    Article  CAS  Google Scholar 

  6. Zubko, M.K., Zubko, E.I., van Zuilen, K., Mayer, P. & Day, A. Stable transformation of petunia plastids. Transgenic Res. 13, 523–530 (2004).

    Article  CAS  Google Scholar 

  7. Svab, Z., Hajdukiewicz, P. & Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87, 8526–8530 (1990).

    Article  CAS  Google Scholar 

  8. Maliga, P. New vectors and marker excision systems mark progress in engineering the plastid genome of higher plants. Photochem. Photobiol. Sci. 4, 971–976 (2005).

    Article  CAS  Google Scholar 

  9. Herz, S., Fussl, M., Steiger, S. & Koop, H.U. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res. 14, 969–982 (2005).

    Article  CAS  Google Scholar 

  10. Hajdukiewicz, P.T.J., Gilbertson, L. & Staub, J.M. Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J. 27, 161–170 (2001).

    Article  CAS  Google Scholar 

  11. Chakrabarti, S.K., Lutz, K.A., Lerwirijawong, B., Svab, Z. & Maliga, P. Expression of the cry9Aa2 B.t. gene in the tobacco chlroplasts confers extreme resistance to potato tuber moth. Transgenic Res. (2006). DOI:10.1007/S11248-006-0018-Z.

  12. Tungsuchat, T., Kuroda, H., Narangajavana, J. & Maliga, P. Gene activation in plastids by the CRE site-specific recombinase. Plant Mol. Biol. 61, 711–718 (2006).

    Article  CAS  Google Scholar 

  13. Klaus, S.M.J., Huang, F.C., Golds, T.J. & Koop, H.-U. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat. Biotechnol. 22, 225–229 (2004).

    Article  CAS  Google Scholar 

  14. Iamtham, S. & Day, A. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18, 1172–1176 (2000).

    Article  CAS  Google Scholar 

  15. Kode, V., Mudd, E., Iamtham, S. & Day, A. Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. Plant J. 46, 901–909 (2006).

    Article  CAS  Google Scholar 

  16. Murashige, T. & Skoog, F. A revised medium for the growth and bioassay with tobacco tissue culture. Physiol. Plant 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  17. Cséplö, A. & Maliga, P. Large scale isolation of maternally inherited lincomycin resistance mutations, in diploid Nicotiana plumbaginifolia protoplast cultures. Mol. Gen. Genet. 196, 407–412 (1984).

    Article  Google Scholar 

  18. Murray, M.G. & Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).

    Article  CAS  Google Scholar 

  19. Khan, M.S. & Maliga, P. Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat. Biotechnol. 17, 910–915 (1999).

    Article  CAS  Google Scholar 

  20. Kapila, J., De Rycke, R., Van Montagu, M. & Angenon, G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122, 101–108 (1997).

    Article  CAS  Google Scholar 

  21. Kuroda, H. & Maliga, P. The plastid clpP1 gene is essential for plant development. Nature 425, 86–89 (2003).

    Article  CAS  Google Scholar 

  22. Klein, T.M., Wolf, E.D., Wu, R. & Sanford, J.C. High-velocity microprojectiles for delivering nucleic acids in living cells. Nature 327, 70–73 (1987).

    Article  CAS  Google Scholar 

  23. O'Neill, C., Horvath, G.V., Horvath, E., Dix, P.J. & Medgyesy, P. Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 3, 729–738 (1993).

    Article  CAS  Google Scholar 

  24. Golds, T., Maliga, P. & Koop, H.U. Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Biotechnology 11, 95–97 (1993).

    CAS  Google Scholar 

  25. Kofer, W., Eibl, C., Steinmuller, K. & Koop, H.-U. PEG-mediated plastid transformation in higher plants. In Vitro Cell Dev. Biol.-Plant 34, 303–309 (1998).

    Article  CAS  Google Scholar 

  26. Corneille, S., Lutz, K.A., Azhagiri, A.K. & Maliga, P. Identification of functional lox sites in the plastid genome. Plant J. 35, 753–762 (2003).

    Article  CAS  Google Scholar 

  27. Hood, E.E., Helmer, G.L., Fraley, R.T. & Chilton, M.D. The hypervirulance of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168, 1291–1301 (1986).

    Article  CAS  Google Scholar 

  28. Hood, E.E., Gelvin, S.B., Melchers, L.S. & Hoekema, A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2, 208–218 (1993).

    Article  CAS  Google Scholar 

  29. Maliga, P. & Nixon, P. Judging the homoplastomic state of plastid transformants. Trends Plant Sci. 3, 4–6 (1998).

    Article  Google Scholar 

  30. Ruf, S., Biehler, K. & Bock, R. A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. J. Cell Biol. 149, 369–377 (2000).

    Article  CAS  Google Scholar 

  31. Swiatek, M. et al. PCR analysis of pulsed-field gel electrophoresis-purifed plastid DNA, a sensitive tool to judge the hetero-/homoplastomic status of plastid transformants. Curr. Genet. 43, 45–53 (2003).

    CAS  PubMed  Google Scholar 

  32. Maliga, P. Engineering the plastid genome of higher plants. Curr. Opin. Plant Biol. 5, 164–172 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Azhagiri for making information about vector pPRV123 available at the prepublication stage. Development of plastid transformation and marker excision systems was supported by grants from the National Science Foundation and the USDA Biotechnology Risk Assessment Research Grant Program to P.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, K., Svab, Z. & Maliga, P. Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat Protoc 1, 900–910 (2006). https://doi.org/10.1038/nprot.2006.118

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2006.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing