Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A simple method for quantitative determination of polysaccharides in fungal cell walls

Abstract

A simple and reliable method for quantitative determination of cell wall polymers in fungal cell with an s.e.m. of 5% is described. This protocol is based on the hydrolysis by sulfuric acid of β-glucan, mannan, galactomannan and chitin present at different levels in the wall of yeasts and filamentous fungi into their corresponding monomers glucose, mannose, galactose and glucosamine. The released monosaccharides are subsequently separated and quantified by high-performance ionic chromatography coupled to pulse amperometry detection, with a detection limit of 1.0 μg ml−1. This procedure is well suited to screening a large collection of yeast mutants or to evaluating effects of environmental conditions on cell wall polysaccharide content. This procedure is also applicable to other fungal species, including Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus. Results can be obtained in 3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Fleet, G.H. Cell walls. In The Yeast 2nd edn. Vol. 4 (eds. Rose, A.H. & Harrison, J.S) 199–277 (Academic Press, London, 1991).

    Google Scholar 

  2. Klis, F.M., Mol, P., Hellingwerf, K. & Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239–256 (2002).

    Article  CAS  Google Scholar 

  3. Latge, J.P. et al. Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med. Mycol. 43 (Suppl. 1): S15–S22 (2005).

    Article  CAS  Google Scholar 

  4. Lesage, G. & Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343 (2006).

    Article  CAS  Google Scholar 

  5. Georgopapadakou, N.H. Update on antifungals targeted to the cell wall: focus on beta-1,3-glucan synthase inhibitors. Expert. Opin. Investig. Drugs 10, 269–280 (2001).

    Article  CAS  Google Scholar 

  6. Goldman, R.C. et al. Antifungal drug targets: Candida secreted aspartyl protease and fungal wall beta-glucan synthesis. Infect. Agents Dis. 4, 228–247 (1995).

    CAS  PubMed  Google Scholar 

  7. Onishi, J. et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 44, 368–377 (2000).

    Article  CAS  Google Scholar 

  8. Brown, G. & Gordon, S. Immune recognition. A new receptor for β-D-glucans. Nature 413, 36–37 (2001).

    Article  CAS  Google Scholar 

  9. Wheeler, R.T. & Fink, G.R. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog. 2, e35 (2006).

    Article  Google Scholar 

  10. Cameron, D.R., Cooper, D.G. & Neufeld, R.J. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol. 54, 1420–1425 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dupin, I.V. et al. Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: evaluation of extraction methods and immunolocalization. J. Agric. Food Chem. 48, 1086–1095 (2000).

    Article  CAS  Google Scholar 

  12. Yiannikouris, A. et al. Comprehensive conformational study of key interactions involved in zearalenone complexation with beta-D-glucans. Biomacromolecules 5, 2176–2185 (2004).

    Article  CAS  Google Scholar 

  13. Yiannikouris, A. et al. Chemical and conformational study of the interactions involved in mycotoxin complexation with beta-D-glucans. Biomacromolecules 7, 1147–1155 (2006).

    Article  CAS  Google Scholar 

  14. Catley, B.J. Isolation and analysis of cell walls. In Yeast: A Practical Approach (eds. Campbell, D. and Duffus, J. H.) 183–197 (IRL Press, Oxford, 1988).

    Google Scholar 

  15. Hong, Z., Mann, P., Shaw, K.J. & Didomenico, B. Analysis of beta-glucans and chitin in Saccharomyces cerevisiae cell wall mutant using high-performance liquid chromatography. Yeast 10, 1083–1092 (1994).

    Article  CAS  Google Scholar 

  16. Magnelli, P., Cipollo, J.F. & Abeijon, C. A refined method for the determination of Saccharomyces cerevisiae cell wall composition and beta-1,6-glucan fine structure. Anal. Biochem. 301, 136–150 (2002).

    Article  CAS  Google Scholar 

  17. Ip, C.C.Y., Manam, V., Helper, R. & Hennessey, J.P. Carbohydrate composition of analysis bacterial polysaccharides: optimized acid hydrolysis conditions for HPAEC-PAD analysis. Anal. Biochem. 201, 343–349 (1992).

    Article  CAS  Google Scholar 

  18. Ram, A.F., Wolters, A., Ten Hoopen, R. & Klis, F.M. A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 8, 1019–1030 (1994).

    Article  Google Scholar 

  19. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P.W. & Cabib, E. Architecture of the yeast cell wall. The linkage between chitin and β(1 → 3)-glucan. J. Biol. Chem. 270, 1170–1178 (1995).

    Article  CAS  Google Scholar 

  20. Garleb, K.A., Bourquin, L.D. & Fahey, G.J. Jr. Neutral monosaccharide composition of various fibrous substrates: a comparison of hydrolytic procedures and use of anion-exchange high-performance liquid chromatography with pulsed amperometric detection of monosaccharides. J. Agric. Food Chem. 37, 1297–1293 (1989).

    Article  Google Scholar 

  21. Dallies, N., François, J. & Paquet, V. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14, 1297–1306 (1998).

    Article  CAS  Google Scholar 

  22. Hardy, M.R., Towsend, R.R. & Lee, Y.C. Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal. Biochem. 170, 54–62 (1988).

    Article  CAS  Google Scholar 

  23. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    Article  CAS  Google Scholar 

  24. Bergmeyer, H.U. Methods of Enzymatic Analysis, 3rd edn. (VCH Publishers, 1986).

    Google Scholar 

  25. Bulik, D.A. et al. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot. Cell 2, 886–900 (2003).

    Article  CAS  Google Scholar 

  26. Parrou, J.L. & François, J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal. Biochem. 248, 186–188 (1997).

    Article  CAS  Google Scholar 

  27. Kaneko, H. & Itoh, T. Concerning the extraction of lipids from yeast. Lipids 11, 821–822 (1976).

    Article  CAS  Google Scholar 

  28. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  29. Lagorce, A. et al. Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae. Eur. J. Biochem. 269, 1697–1707 (2002).

    Article  CAS  Google Scholar 

  30. Munro, C.A. et al. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol. Microbiol. 39, 1414–1426 (2001).

    Article  CAS  Google Scholar 

  31. Bernard, M. & Latge, J.P. Aspergillus fumigatus cell wall: composition and biosynthesis. Med. Mycol. 39 (Suppl 1): 9–17 (2001).

    Article  CAS  Google Scholar 

  32. Aguilar-Uscanga, B. & François, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 37, 268–274 (2003).

    Article  CAS  Google Scholar 

  33. Roncero, C. & Duran, A. Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J. Bacteriol. 163, 1180–1185 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Fonds de Recherche Hoechst Marion Roussel (no. FRHMR2/9922) and the European Union (grants BIO4-CT95-0080 and QKL3-2000-01537). The author thanks Dr. Thierry Fontaine (Pasteur Institute, France) for his kind gift of purified cell wall samples from A. fumigatus and is grateful to Marie-Odile Loret for her expertise and help with HPIC measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Marie François.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

François, J. A simple method for quantitative determination of polysaccharides in fungal cell walls. Nat Protoc 1, 2995–3000 (2006). https://doi.org/10.1038/nprot.2006.457

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2006.457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing