Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies

Abstract

Cell culture is an invaluable tool for investigation of basic biological processes. However, technical hurdles including low cell yield, poor cell differentiation and poor attachment to the growth substrate have limited the use of this tool for studies of the genetic model organism Caenorhabditis elegans. This protocol describes a method for the large-scale culture of C. elegans embryo cells. We also describe methods for in vitro RNA interference, fluorescence-activated cell sorting of embryo cells and imaging of cultured cells for patch-clamp electrophysiology studies. Developing embryos are isolated from gravid adult worms. After eggshell removal by enzymatic digestion, embryo cells are dissociated and plated onto glass substrates. Isolated cells terminally differentiate within 24 h. Analysis of gene expression patterns and cell-type frequency suggests that in vitro embryo cell cultures recapitulate the developmental characteristics of L1 larvae. Cultured embryo cells are well suited for physiological analysis as well as molecular and cell biological studies. The embryo cell isolation protocol can be completed in 5–6 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Appearance of isolated C. elegans embryos during chitinase digestion of the eggshell.
Figure 2: Appearance of embryo cells during various isolation steps.
Figure 3: Morphological and GFP reporter expression characteristics in cultured terminally differentiated C. elegans embryo cells.
Figure 4: Whole-cell and cell-attached currents recorded from C. elegans mechanosensory neurons.
Figure 5: Patch-clamp electrophysiology and intracellular Ca2+ imaging in cultured C. elegans intestinal cells.
Figure 6: Effect of stim-1 RNAi on whole-cell SOCC currents recorded from cultured C. elegans intestinal cells.

Similar content being viewed by others

References

  1. Barr, M.M. Super models. Physiol. Genomics 13, 15–24 (2003).

    Article  CAS  Google Scholar 

  2. Strange, K. From genes to integrative physiology: ion channel and transporter biology in Caenorhabditis elegans . Physiol. Rev. 83, 377–415 (2003).

    Article  CAS  Google Scholar 

  3. Bloom, L. Genetic and molecular analysis of genes required for axon outgrowth in Caenorhabditis elegans 1–412 (Massachusetts Institute of Technology, Boston, MA, 1993).

    Google Scholar 

  4. Buechner, M., Hall, D.H., Bhatt, H. & Hedgecock, E.M. Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev. Biol. 214, 227–241 (1999).

    Article  CAS  Google Scholar 

  5. Christensen, M. & Strange, K. Developmental regulation of a novel outwardly rectifying mechanosensitive anion channel in Caenorhabditis elegans . J. Biol. Chem. 276, 45024–45030 (2001).

    Article  CAS  Google Scholar 

  6. Christensen, M. et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514 (2002).

    Article  CAS  Google Scholar 

  7. Grishok, A. RNAi mechanisms in Caenorhabditis elegans . FEBS Lett. 579, 5932–5939 (2005).

    Article  CAS  Google Scholar 

  8. Kamath, R.S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans . Methods 30, 313–321 (2003).

    Article  CAS  Google Scholar 

  9. Zhang, Y. et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002).

    Article  CAS  Google Scholar 

  10. The Axon CNS Guide, A Laboratory Guide to Electrophysiology and Biophysics (Molecular Devices Corporation, Union City, CA, 2006).

  11. Estevez, A.Y., Roberts, R.K. & Strange, K. Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J. Gen. Physiol. 122, 207–223 (2003).

    Article  CAS  Google Scholar 

  12. Yuan, A. et al. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37, 765–773 (2003).

    Article  CAS  Google Scholar 

  13. Carvelli, L., McDonald, P.W., Blakely, R.D. & DeFelice, L.J. Dopamine transporters depolarize neurons by a channel mechanism. Proc. Natl. Acad. Sci. USA 101, 16046–16051 (2004).

    Article  CAS  Google Scholar 

  14. Park, K.H., Hernandez, L., Cai, S.Q., Wang, Y. & Sesti, F. A family of K+ channel ancillary subunits regulate taste sensitivity in Caenorhabditis elegans . J. Biol. Chem. 280, 21893–21899 (2005).

    Article  CAS  Google Scholar 

  15. Estevez, A.Y. & Strange, K. Calcium feedback mechanisms regulate oscillatory activity of a TRP-like Ca2+ conductance in C. elegans intestinal cells. J. Physiol. 567, 239–251 (2005).

    Article  CAS  Google Scholar 

  16. Bianchi, L. et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci. 7, 1337–1344 (2004).

    Article  CAS  Google Scholar 

  17. Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

    Article  CAS  Google Scholar 

  18. Teramoto, T., Lambie, E.J. & Iwasaki, K. Differential regulation of TRPM channels governs electrolyte homeostasis in the C. elegans intestine. Cell Metab. 1, 343–354 (2005).

    Article  CAS  Google Scholar 

  19. Mullen, G.P. et al. The Caenorhabditis elegans snf-11 gene encodes a sodium-dependent GABA transporter required for clearance of synaptic GABA. Mol. Biol. Cell 17, 3021–3030 (2006).

    Article  CAS  Google Scholar 

  20. Goodman, M.B. & Schwarz, E.M. Transducing touch in Caenorhabditis elegans . Annu. Rev. Physiol. 65, 429–452 (2003).

    Article  CAS  Google Scholar 

  21. O'Hagan, R., Chalfie, M. & Goodman, M.B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8, 43–50 (2005).

    Article  CAS  Google Scholar 

  22. Hamill, O.P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).

    Article  CAS  Google Scholar 

  23. Frokjaer-Jensen, C. et al. Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensory neurons. J. Neurobiol. 66, 1125–1139 (2006).

    Article  CAS  Google Scholar 

  24. Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

    Article  CAS  Google Scholar 

  25. Dal Santo, P., Logan, M.A., Chisholm, A.D. & Jorgensen, E.M. The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans . Cell 98, 757–767 (1999).

    Article  CAS  Google Scholar 

  26. Espelt, M.V., Estevez, A.Y., Yin, X. & Strange, K. Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C β and γ. J. Gen. Physiol. 126, 379–392 (2005).

    Article  CAS  Google Scholar 

  27. Teramoto, T. & Iwasaki, K. Intestinal calcium waves coordinate a behavioral motor program in C. elegans . Cell Calcium 40, 319–327 (2006).

    Article  CAS  Google Scholar 

  28. Yan, X. et al. Function of a STIM1 homologue in C. elegans: evidence that store-operated Ca2+ entry is not essential for oscillatory Ca2+ signaling and ER Ca2+ homeostasis. J. Gen. Physiol. 128, 459 (2006).

    Article  Google Scholar 

  29. Lorin-Nebel, C., Xing, J., Yan, X. & Strange, K. CRAC channel activity in C. elegans is mediated by Orai1 and STIM1 homologs and is essential for ovulation and fertility. J. Physiol. 580, 67–85 (2007).

    Article  CAS  Google Scholar 

  30. Cinar, H., Keles, S. & Jin, Y. Expression profiling of GABAergic motor neurons in Caenorhabditis elegans . Curr. Biol. 15, 340–346 (2005).

    Article  CAS  Google Scholar 

  31. Fox, R.M. et al. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 6, 42 (2005).

    Article  Google Scholar 

  32. Colosimo, M.E. et al. Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr. Biol. 14, 2245–2251 (2004).

    Article  CAS  Google Scholar 

  33. Fukushige, T., Hawkins, M.G. & McGhee, J.D. The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev. Biol. 198, 286–302 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 grants DK51610, DK61168 and GM74229 to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Strange.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strange, K., Christensen, M. & Morrison, R. Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies. Nat Protoc 2, 1003–1012 (2007). https://doi.org/10.1038/nprot.2007.143

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing