Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Imaging activation of adult-generated granule cells in spatial memory

Abstract

New neurons are continuously generated in the subgranular zone of the hippocampus throughout adulthood, and there is increasing interest as to whether these new neurons become functionally integrated into memory circuits. This protocol describes the immunohistochemical procedures to visualize the recruitment of new neurons into circuits supporting spatial memory in intact mice. To label adult-generated granule cells, mice are injected with the proliferation marker 5-bromo-2′-deoxyuridine (BrdU). At different delays after BrdU treatment, mice are trained to locate a hidden platform in the Morris water maze, and spatial memory can then be tested in a probe test with the platform removed from the pool. Ninety minutes after this probe test, mice are perfused and tissue is sectioned. Immunohistochemical procedures are used to quantify BrdU-labeled cells and expression of the immediate early gene, Fos. Because Fos expression is regulated by neuronal activity, the degree of overlap between BrdU-labeled and Fos-labeled neurons provides an indication of whether adult-generated granule neurons have been incorporated into spatial memory circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-lasting water maze memory in mice.
Figure 2: Comparison of C57B6/129 and C57B6 mice in the water maze.
Figure 3: Survival of adult-generated granule cells.
Figure 4: Experimental designs.
Figure 5: Examples of Fos- and 5-bromo-2′-deoxyuridine (BrdU)-labeling in the dentate gyrus.

Similar content being viewed by others

References

  1. Ming, G.L. & Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Piatti, V.C., Espósito, M.S. & Schinder, A.F. The timing of neuronal development in adult hippocampal neurogenesis. Neuroscientist 12, 463–468 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Aimone, J.B., Wiles, J. & Gage, F.H. Potential role for adult neurogenesis in the encoding of time in new memories. Nat. Neurosci. 9, 723–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wojtowicz, J.M. Irradiation as an experimental tool in studies of adult neurogenesis. Hippocampus 16, 261–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Shors, T.J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Leuner, B., Gould, E. & Shors, T.J. Is there a link between adult neurogenesis and learning? Hippocampus 16, 216–224 (2006).

    Article  PubMed  Google Scholar 

  7. Saxe, M.D. et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc. Natl. Acad. Sci. USA 103, 17501–17506 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Winocur, G., Wojtowicz, J.M., Sekeres, M., Snyder, J.S. & Wang, S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 16, 296–304 (2006).

    Article  PubMed  Google Scholar 

  9. Shors, T.J., Townsend, D.A., Zhao, M., Kozorovitskiy, Y. & Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12, 578–584 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meshi, D. et al. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat. Neurosci. 9, 729–731 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Snyder, J.S., Hong, N.S., McDonald, R.J. & Wojtowicz, J.M. A role for adult neurogenesis in spatial long-term memory. Neuroscience 130, 843–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Saxe, M.D. et al. Paradoxical influence of hippocampal neurogenesis on working memory. Proc. Natl. Acad. Sci. USA 104, 4642–4646 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dupret, D. et al. Methylazoxymethanol acetate does not fully block cell genesis in the young and aged dentate gyrus. Eur. J. Neurosci. 22, 778–83 (2005).

    Article  PubMed  Google Scholar 

  14. Monje, M.L., Mizumatsu, S., Fike, J.R. & Palmer, T.D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8, 955–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Jessberger, S. & Kempermann, G. Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur. J. Neurosci. 18, 2707–2712 (2003).

    Article  PubMed  Google Scholar 

  17. Kee, N., Teixeira, C.M., Wang, A.H. & Frankland, P.W. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 10, 355–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Ramirez-Amaya, V., Marrone, D.F., Gage, F.H., Worley, P.F. & Barnes, C.A. Integration of new neurons into functional neural networks. J. Neurosci. 26, 12237–12241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tashiro, A., Makino, H. & Gage, F.H. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J. Neurosci. 27, 3252–3259 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuhn, H.G. & Cooper-Kuhn, C.M. Bromodeoxyuridine and the detection of neurogenesis. Curr. Pharm. Biotechnol. 8, 127–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Nowakowski, R.S., Lewin, S.B. & Miller, M.W. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J. Neurocytol. 18, 311–318 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Wojtowicz, J.M. & Kee, N. BrdU assay for neurogenesis in rodents. Nat. Protoc. 1, 1399–1405 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Morris, R.G., Garrud, P., Rawlins, J.N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Vorhees, C.V. & Williams, M.T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1, 848–858 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morris, R.G. et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 773–786 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whishaw, I.Q. A comparison of rats and mice in a swimming pool place task and matching to place task: some surprising differences. Physiol. Behav. 58, 687–693 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Whishaw, I.Q. & Tomie, J.A. Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol. Behav. 60, 1191–1197 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Teixeira, C.M., Pomedli, S.R., Maei, H.R., Kee, N. & Frankland, P.W. Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J. Neurosci. 26, 7555–7564 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Clark, R.E., Broadbent, N.J. & Squire, L.R. Hippocampus and remote spatial memory in rats. Hippocampus 15, 260–272 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Holmes, A., Wrenn, C.C., Harris, A.P., Thayer, K.E. & Crawley, J.N. Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes Brain Behav. 1, 55–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Owen, E.H., Logue, S.F., Rasmussen, D.L. & Wehner, J.M. Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 80, 1087–1099 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M. & Gage, F.H. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130, 391–399 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Altman, J. & Das, G.D. Post-natal origin of microneurones in the rat brain. Nature 207, 953–956 (1965).

    Article  CAS  PubMed  Google Scholar 

  34. Kee, N., Sivalingam, S., Boonstra, R. & Wojtowicz, J.M. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J. Neurosci. Methods 115, 97–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, C., Teng, E.M., Summers, R.G. Jr., Ming, G.L. & Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Toni, N. et al. Synapse formation on neurons born in the adult hippocampus. Nat. Neurosci. 10, 727–734 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L. & Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54, 559–566 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laplagne, D.A. et al. Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol. 4, e409 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laplagne, D.A. et al. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. Eur. J. Neurosci. 25, 2973–2981 (2007).

    Article  PubMed  Google Scholar 

  41. Kempermann, G., Jessberger, S., Steiner, B. & Kronenberg, G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27, 447–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Kempermann, G., Kuhn, H.G. & Gage, F.H. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc. Natl. Acad. Sci. USA 94, 10409–10414 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anisimov, V.N. The sole DNA damage induced by bromodeoxyuridine is sufficient for initiation of both aging and carcinogenesis in vivo. Ann. NY Acad. Sci. 719, 494–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Kolb, B., Pedersen, B., Ballermann, M., Gibb, R. & Whishaw, I.Q. Embryonic and postnatal injections of bromodeoxyuridine produce age-dependent morphological and behavioral abnormalities. J. Neurosci. 19, 2337–2346 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kempermann, G. Adult Neurogenesis 448 (Oxford University Press, Oxford, 2005).

    Google Scholar 

  46. Cameron, H.A. & McKay, R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435, 406–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Eadie, B.D., Redila, V.A. & Christie, B.R. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Comp. Neurol. 486, 39–47 (2005).

    Article  PubMed  Google Scholar 

  48. Palmer, T.D., Willhoite, A.R. & Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. van Praag, H., Christie, B.R., Sejnowski, T.J. & Gage, F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 96, 13427–13431 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kempermann, G., Kuhn, H.G. & Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Gould, E., Woolley, C.S., Cameron, H.A., Daniels, D.C. & McEwen, B.S. Adrenal steroids regulate postnatal development of the rat dentate gyrus: II. Effects of glucocorticoids and mineralocorticoids on cell birth. J. Comp. Neurol. 313, 486–493 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Kuhn, H.G., Dickinson-Anson, H. & Gage, F.H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ghosh, A., Ginty, D.D., Bading, H. & Greenberg, M.E. Calcium regulation of gene expression in neuronal cells. J. Neurobiol. 25, 294–303 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Dragunow, M. & Robertson, H.A. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329, 441–442 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Morgan, J.I., Cohen, D.R., Hempstead, J.L. & Curran, T. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237, 192–197 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Saffen, D.W. et al. Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc. Natl. Acad. Sci. USA 85, 7795–7799 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cole, A.J., Saffen, D.W., Baraban, J.M. & Worley, P.F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Dragunow, M. et al. Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neurosci. Lett. 101, 274–280 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Worley, P.F. et al. Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. J. Neurosci. 13, 4776–4786 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hunt, S.P., Pini, A. & Evan, G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632–634 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Anokhin, K.V. & Rose, S.P. Learning-induced increase of immediate early gene messenger rna in the chick forebrain. Eur. J. Neurosci. 3, 162–167 (1991).

    Article  PubMed  Google Scholar 

  62. Tischmeyer, W., Kaczmarek, L., Strauss, M., Jork, R. & Matthies, H. Accumulation of c-fos mRNA in rat hippocampus during acquisition of a brightness discrimination. Behav. Neural Biol. 54, 165–171 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Farivar, R., Zangenehpour, S. & Chaudhuri, A. Cellular-resolution activity mapping of the brain using immediate-early gene expression. Front Biosci. 9, 104–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Radulovic, J., Kammermeier, J. & Spiess, J. Relationship between fos production and classical fear conditioning: effects of novelty, latent inhibition, and unconditioned stimulus preexposure. J. Neurosci. 18, 7452–7461 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chawla, M.K. et al. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15, 579–586 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Jung, M.W. & McNaughton, B.L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3, 165–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Giese, K.P., Fedorov, N.B., Filipkowski, R.K. & Silva, A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Pinaud, R. Experience-dependent immediate early gene expression in the adult central nervous system: evidence from enriched-environment studies. Int. J. Neurosci. 114, 321–333 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Fleischmann, A. et al. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J. Neurosci. 23, 9116–9122 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maviel, T., Durkin, T.P., Menzaghi, F. & Bontempi, B. Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L. & Silva, A.J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Bertaina, V. & Destrade, C. Differential time courses of c-fos mRNA expression in hippocampal subfields following acquisition and recall testing in mice. Brain Res. Cogn. Brain Res. 2, 269–275 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Ross, R.S. & Eichenbaum, H. Dynamics of hippocampal and cortical activation during consolidation of a nonspatial memory. J. Neurosci. 26, 4852–4859 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smith, C.A., Countryman, R.A., Sahuque, L.L. & Colombo, P.J. Time-courses of Fos expression in rat hippocampus and neocortex following acquisition and recall of a socially transmitted food preference. Neurobiol. Learn. Mem. 88, 65–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Yasoshima, Y., Scott, T.R. & Yamamoto, T. Memory-dependent c-Fos expression in the nucleus accumbens and extended amygdala following the expression of a conditioned taste aversive in the rat. Neuroscience 141, 35–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Gusev, P.A., Cui, C., Alkon, D.L. & Gubin, A.N. Topography of Arc/Arg3.1 mRNA expression in the dorsal and ventral hippocampus induced by recent and remote spatial memory recall: dissociation of CA3 and CA1 activation. J. Neurosci. 25, 9384–9397 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Frankland, P.W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Voikar, V., Koks, S., Vasar, E. & Rauvala, H. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol. Behav. 72, 271–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Iivonen, H., Nurminen, L., Harri, M., Tanila, H. & Puolivali, J. Hypothermia in mice tested in Morris water maze. Behav. Brain Res. 141, 207–213 (2003).

    Article  PubMed  Google Scholar 

  80. Shors, T.J. Learning during stressful times. Learn. Mem. 11, 137–144 (2004).

    Article  PubMed  Google Scholar 

  81. Stranahan, A.M., Khalil, D. & Gould, E. Social isolation delays the positive effects of running on adult neurogenesis. Nat. Neurosci. 9, 526–533 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kogan, J.H. et al. Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 1–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Christie, B.R. & Cameron, H.A. Neurogenesis in the adult hippocampus. Hippocampus 16, 199–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Sisti, H.M., Glass, A.L. & Shors, T.J. Neurogenesis and the spacing effect: learning over time enhances memory and the survival of new neurons. Learn. Mem. 14, 368–375 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bouton, M.E. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol. Psychiatry 52, 976–986 (2002).

    Article  PubMed  Google Scholar 

  86. West, M.J., Slomianka, L. & Gundersen, H.J. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231, 482–497 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Josselyn and M. Sakaguchi for comments on this manuscript. This work was supported by grants from Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council (NSERC) and the EJLB Foundation (P.W.F.). N.K. and A.H.W. were supported by the Hospital for Sick Children Restracomp awards. C.M.T. received support from the Graduate Program in Areas of Basic and Applied Biology (GABBA) and the Portuguese Foundation for Science and Technology (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W Frankland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kee, N., Teixeira, C., Wang, A. et al. Imaging activation of adult-generated granule cells in spatial memory. Nat Protoc 2, 3033–3044 (2007). https://doi.org/10.1038/nprot.2007.415

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing