Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo dendritic calcium imaging with a fiberoptic periscope system

Abstract

Dendritic recordings in freely moving animals present great challenges using the current approaches. Here we present in detail a microendoscopic technique (the 'periscope' method) for measuring intracellular calcium activity directly from the apical dendrites of L5 pyramidal neurons from the pia down to depths of 700 μm in anesthetized and freely moving rats. This method gives high signal-to-noise dendritic fluorescence responses to sensory stimuli, and has been proven to be inexpensive, straightforward and reliable, allowing essentially unrestricted behavior. We describe refinements and practical optimizations of procedures aimed at achieving dendritic Ca2+ imaging in freely moving animals. The periscope imaging technique presented here is also ideal for combining with other in vivo recording techniques. The protocol, from the beginning of anesthesia to starting dendritic imaging, can be completed in 5 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of a gradient index (GRIN) lens.
Figure 2: Fiberoptic systems for recording dendritic Ca2+ activity.
Figure 3: The epifluorescence microscope attached to the fiberoptic system for in vivo imaging.
Figure 4: Structure of the periscope.
Figure 5: Bolus loading of Ca2+-sensitive dye into layer 5.
Figure 6: Headmount for awake experiments.
Figure 7: Example of dendritic Ca2+ imaging under anesthesia.
Figure 8: Example of dendritic Ca2+ imaging in a freely moving rat.

Similar content being viewed by others

References

  1. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).

    Article  CAS  Google Scholar 

  2. Stuart, G.J. & Sakmann, B. Active propagation of somatic action-potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  CAS  Google Scholar 

  3. Waters, J. & Helmchen, F. Boosting of action potential backpropagation by neocortical network activity in vivo . J. Neurosci. 24, 11127–11136 (2004).

    Article  CAS  Google Scholar 

  4. Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    Article  CAS  Google Scholar 

  5. Larkum, M.E. & Zhu, J.J. Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo . J. Neurosci. 22, 6991–7005 (2002).

    Article  CAS  Google Scholar 

  6. Tank, D.W., Sugimori, M., Connor, J.A. & Llinas, R.R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242, 773–777 (1988).

    Article  CAS  Google Scholar 

  7. Sugimori, M. & Llinas, R.R. Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro . Proc. Natl. Acad. Sci. USA 87, 5084–5088 (1990).

    Article  CAS  Google Scholar 

  8. Lasser-Ross, N., Miyakawa, H., Lev-Ram, V., Young, S.R. & Ross, W.N. High time resolution fluorescence imaging with a CCD camera. J. Neurosci. Methods 36, 253–261 (1991).

    Article  CAS  Google Scholar 

  9. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  10. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  Google Scholar 

  11. Borst, A. & Egelhaaf, M. In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc. Natl. Acad. Sci. USA 89, 4139–4143 (1992).

    Article  CAS  Google Scholar 

  12. Lee, A.K., Manns, I.D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. Neuron 51, 399–407 (2006).

    Article  CAS  Google Scholar 

  13. Göbel, W., Kerr, J.N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).

    Article  Google Scholar 

  14. Engelbrecht, C.J., Johnston, R.S., Seibel, E.J. & Helmchen, F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo . Opt. Express 16, 5556–5564 (2008).

    Article  CAS  Google Scholar 

  15. Fee, M.S. & Leonardo, A. Miniature motorized microdrive and commutator system for chronic neural recording in small animals. J. Neurosci. Methods 112, 83–94 (2001).

    Article  CAS  Google Scholar 

  16. Flusberg, B.A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods 5, 935–938 (2008).

    Article  CAS  Google Scholar 

  17. Nagayama, S. et al. In vivo simultaneous tracing and Ca(2+) imaging of local neuronal circuits. Neuron 53, 789–803 (2007).

    Article  CAS  Google Scholar 

  18. Nevian, T. & Helmchen, F. Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch. 454, 675–688 (2007).

    Article  CAS  Google Scholar 

  19. Griesbeck, O. Fluorescent proteins as sensors for cellular functions. Curr. Opin. Neurobiol. 14, 636–641 (2004).

    Article  CAS  Google Scholar 

  20. Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    Article  CAS  Google Scholar 

  21. Hasan, M.T. et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS. Biol. 2, e163 (2004).

    Article  Google Scholar 

  22. Helmchen, F., Svoboda, K., Denk, W. & Tank, D.W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2, 989–996 (1999).

    Article  CAS  Google Scholar 

  23. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo . J. Neurosci. 23, 8558–8567 (2003).

    Article  CAS  Google Scholar 

  24. Gobel, W. & Helmchen, F. New angles on neuronal dendrites in vivo . J. Neurophysiol. 98, 3770–3779 (2007).

    Article  Google Scholar 

  25. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    Article  CAS  Google Scholar 

  26. Kudo, Y. et al. A single optical fiber fluorometric device for measurement of intracellular Ca2+ concentration: its application to hippocampal neurons in vitro and in vivo . Neuroscience 50, 619–625 (1992).

    Article  CAS  Google Scholar 

  27. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  28. Adelsberger, H., Garaschuk, O. & Konnerth, A. Cortical calcium waves in resting newborn mice. Nat. Neurosci. 8, 988–990 (2005).

    Article  CAS  Google Scholar 

  29. Knittel, J., Schnieder, L., Buess, G., Messerschmidt, B. & Possner, T. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188, 267–273 (2001).

    Article  CAS  Google Scholar 

  30. Flusberg, B.A. et al. Fiber-optic fluorescence imaging. Nat. Methods 2, 941–950 (2005).

    Article  CAS  Google Scholar 

  31. Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    Article  CAS  Google Scholar 

  32. Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R. & Schnitzer, M.J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    Article  Google Scholar 

  33. Murayama, M., Pérez-Garci, E., Lüscher, H.R. & Larkum, M.E. Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. J. Neurophysiol. 98, 1791–1805 (2007).

    Article  Google Scholar 

  34. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

    Article  CAS  Google Scholar 

  35. Kerr, J.N., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo . Proc. Natl. Acad. Sci. USA 102, 14063–14068 (2005).

    Article  CAS  Google Scholar 

  36. Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  Google Scholar 

  37. Larkum, M.E., Zhu, J.J. & Sakmann, B. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. (Lond.) 533, 447–466 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-R. Lüscher and J.J. Letzkus for their helpful comments on the manuscript, and D. Limoges and J. Burkhalter for their expert technical support. This work was supported by the Swiss National Science Foundation (Grant Nr. PP00A-102721/1) and SystemsX.ch (NEUROCHOICE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E Larkum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murayama, M., Larkum, M. In vivo dendritic calcium imaging with a fiberoptic periscope system. Nat Protoc 4, 1551–1559 (2009). https://doi.org/10.1038/nprot.2009.142

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2009.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing