Abstract
Dendritic recordings in freely moving animals present great challenges using the current approaches. Here we present in detail a microendoscopic technique (the 'periscope' method) for measuring intracellular calcium activity directly from the apical dendrites of L5 pyramidal neurons from the pia down to depths of ∼700 μm in anesthetized and freely moving rats. This method gives high signal-to-noise dendritic fluorescence responses to sensory stimuli, and has been proven to be inexpensive, straightforward and reliable, allowing essentially unrestricted behavior. We describe refinements and practical optimizations of procedures aimed at achieving dendritic Ca2+ imaging in freely moving animals. The periscope imaging technique presented here is also ideal for combining with other in vivo recording techniques. The protocol, from the beginning of anesthesia to starting dendritic imaging, can be completed in 5 h.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
References
Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).
Stuart, G.J. & Sakmann, B. Active propagation of somatic action-potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).
Waters, J. & Helmchen, F. Boosting of action potential backpropagation by neocortical network activity in vivo . J. Neurosci. 24, 11127–11136 (2004).
Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).
Larkum, M.E. & Zhu, J.J. Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo . J. Neurosci. 22, 6991–7005 (2002).
Tank, D.W., Sugimori, M., Connor, J.A. & Llinas, R.R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242, 773–777 (1988).
Sugimori, M. & Llinas, R.R. Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro . Proc. Natl. Acad. Sci. USA 87, 5084–5088 (1990).
Lasser-Ross, N., Miyakawa, H., Lev-Ram, V., Young, S.R. & Ross, W.N. High time resolution fluorescence imaging with a CCD camera. J. Neurosci. Methods 36, 253–261 (1991).
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).
Borst, A. & Egelhaaf, M. In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc. Natl. Acad. Sci. USA 89, 4139–4143 (1992).
Lee, A.K., Manns, I.D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. Neuron 51, 399–407 (2006).
Göbel, W., Kerr, J.N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).
Engelbrecht, C.J., Johnston, R.S., Seibel, E.J. & Helmchen, F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo . Opt. Express 16, 5556–5564 (2008).
Fee, M.S. & Leonardo, A. Miniature motorized microdrive and commutator system for chronic neural recording in small animals. J. Neurosci. Methods 112, 83–94 (2001).
Flusberg, B.A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods 5, 935–938 (2008).
Nagayama, S. et al. In vivo simultaneous tracing and Ca(2+) imaging of local neuronal circuits. Neuron 53, 789–803 (2007).
Nevian, T. & Helmchen, F. Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch. 454, 675–688 (2007).
Griesbeck, O. Fluorescent proteins as sensors for cellular functions. Curr. Opin. Neurobiol. 14, 636–641 (2004).
Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).
Hasan, M.T. et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS. Biol. 2, e163 (2004).
Helmchen, F., Svoboda, K., Denk, W. & Tank, D.W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2, 989–996 (1999).
Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo . J. Neurosci. 23, 8558–8567 (2003).
Gobel, W. & Helmchen, F. New angles on neuronal dendrites in vivo . J. Neurophysiol. 98, 3770–3779 (2007).
Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).
Kudo, Y. et al. A single optical fiber fluorometric device for measurement of intracellular Ca2+ concentration: its application to hippocampal neurons in vitro and in vivo . Neuroscience 50, 619–625 (1992).
Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).
Adelsberger, H., Garaschuk, O. & Konnerth, A. Cortical calcium waves in resting newborn mice. Nat. Neurosci. 8, 988–990 (2005).
Knittel, J., Schnieder, L., Buess, G., Messerschmidt, B. & Possner, T. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188, 267–273 (2001).
Flusberg, B.A. et al. Fiber-optic fluorescence imaging. Nat. Methods 2, 941–950 (2005).
Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).
Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R. & Schnitzer, M.J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).
Murayama, M., Pérez-Garci, E., Lüscher, H.R. & Larkum, M.E. Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. J. Neurophysiol. 98, 1791–1805 (2007).
Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).
Kerr, J.N., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo . Proc. Natl. Acad. Sci. USA 102, 14063–14068 (2005).
Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).
Larkum, M.E., Zhu, J.J. & Sakmann, B. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. (Lond.) 533, 447–466 (2001).
Acknowledgements
We thank H.-R. Lüscher and J.J. Letzkus for their helpful comments on the manuscript, and D. Limoges and J. Burkhalter for their expert technical support. This work was supported by the Swiss National Science Foundation (Grant Nr. PP00A-102721/1) and SystemsX.ch (NEUROCHOICE).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Murayama, M., Larkum, M. In vivo dendritic calcium imaging with a fiberoptic periscope system. Nat Protoc 4, 1551–1559 (2009). https://doi.org/10.1038/nprot.2009.142
Published:
Issue date:
DOI: https://doi.org/10.1038/nprot.2009.142
This article is cited by
-
Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues
Nature Communications (2022)
-
Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice
Nature Protocols (2018)
-
Controlled delivery and minimally invasive imaging of stem cells in the lung
Scientific Reports (2017)
-
Development of an imaging system for in vivo real-time monitoring of neuronal activity in deep brain of free-moving rats
Histochemistry and Cell Biology (2017)
-
An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits
Nature Protocols (2015)


