Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Soft lithography for micro- and nanoscale patterning

Abstract

This protocol provides an introduction to soft lithography—a collection of techniques based on printing, molding and embossing with an elastomeric stamp. Soft lithography provides access to three-dimensional and curved structures, tolerates a wide variety of materials, generates well-defined and controllable surface chemistries, and is generally compatible with biological applications. It is also low in cost, experimentally convenient and has emerged as a technology useful for a number of applications that include cell biology, microfluidics, lab-on-a-chip, microelectromechanical systems and flexible electronics/photonics. As examples, here we focus on three of the commonly used soft lithographic techniques: (i) microcontact printing of alkanethiols and proteins on gold-coated and glass substrates; (ii) replica molding for fabrication of microfluidic devices in poly(dimethyl siloxane), and of nanostructures in polyurethane or epoxy; and (iii) solvent-assisted micromolding of nanostructures in poly(methyl methacrylate).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic illustration of the procedures for fabricating normal PDMS (left panel) and h-/PDMS (right panel) stamps, respectively.
Figure 3
Figure 4: Photographs of the dessicator used to treat the surface of the master with TFOCS vapor.
Figure 5: Photographs of four major stages involved in the fabrication of PDMS stamps.
Figure 6: Photographs of three major steps involved in μCP of alkanethiol on gold, which is evaporated as a thin film on a silicon substrate with 5–10 nm titanium (for e-beam evaporation) or chromium (for e-beam or thermal evaporation) as the adhesion layer: left, initiating contact between the PDMS stamp and the gold surface from the edge with an angle to avoid trapping air bubbles between them; middle, leaving the stamp in contact with gold for 10 s; and right, separating the stamp from the gold surface.
Figure 7: Three typical examples of micro- and nanostructures fabricated using soft lithography.

Similar content being viewed by others

References

  1. Whitesides, G.M. The right size: nanobiotechnology. Nat. Biotech. 21, 1161–1165 (2003).

    Article  CAS  Google Scholar 

  2. Beaudet, A.L. & Belmont, J.W. Array-based DNA diagnostics: let the revolution begin. Annu. Rev. Med. 59, 113–129 (2008).

    Article  CAS  Google Scholar 

  3. Zhang, Y. & Ozdemir, P. Microfluidic DNA amplification—a review. Anal. Chim. Acta 638, 115–125 (2009).

    Article  CAS  Google Scholar 

  4. Herold, K.E. & Rasooly, A. (eds.). Lab-on-a-Chip Technology: Fabrication and Microfluidics. (Caister Academic Press, Hethersett, Norwich, UK, 2009).

    Google Scholar 

  5. Cui, H.F. et al. Microelectrode array biochip: tool for in vitro drug screening based on the detection of a drug effect on dopamine release from PC12 cells. Anal. Chem. 78, 6347–6355 (2006).

    Article  CAS  Google Scholar 

  6. Li, N., Tourovskaia, A. & Folch, A. Biology on a chip: microfabrication for studying the behavior of cultured cells. Crit. Rev. Biomed. Eng. 31, 423–488 (2003).

    Article  Google Scholar 

  7. Moreau, W.M. Semiconductor Lithography: Principles and Materials (Plenum, New York, 1998).

  8. Fodor, S.P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–73 (1991).

    Article  CAS  Google Scholar 

  9. Xia, Y. & Whitesides, G.M. Soft lithography. Angew. Chem. Int. Ed. Engl. 37, 551–575 (1998).

    Article  Google Scholar 

  10. Kumar, A. & Whitesides, G.M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993).

    Article  CAS  Google Scholar 

  11. Xia, Y. et al. Replica molding using polymeric materials: a practical step toward nanomanufacturing. Adv. Mater. 9, 147–149 (1997).

    Article  CAS  Google Scholar 

  12. Zhao, X.-M., Xia, Y. & Whitesides, G.M. Fabrication of three-dimensional microstructures: microtransfer molding. Adv. Mater. 8, 837–840 (1996).

    Article  CAS  Google Scholar 

  13. Kim, E., Xia, Y. & Whitesides, G.M. Polymeric microstructures formed by moulding in capillaries. Nature 376, 581–584 (1995).

    Article  CAS  Google Scholar 

  14. Kim, E., Xia, Y., Zhao, X.-M. & Whitesides, G.M. Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures of polymeric materials. Adv. Mater. 9, 651–654 (1997).

    Article  CAS  Google Scholar 

  15. Rogers, J.A., Paul, K.E., Jackman, R.J. & Whitesides, G.M. Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Appl. Phys. Lett. 70, 2658–2660 (1997).

    Article  CAS  Google Scholar 

  16. Jeon, S. et al. Three-dimensional nanofabrication with rubber stamps and conformable photomasks. Adv. Mater. 16, 1369–1371 (2004).

    Article  CAS  Google Scholar 

  17. Childs, W.R. & Nuzzo, R.G. Decal transfer microlithography: a new soft-lithographic patterning method. J. Am. Chem. Soc. 124, 13583–13596 (2002).

    Article  CAS  Google Scholar 

  18. Xu, Q., Rioux, R.M., Dickey, M.D. & Whitesides, G.M. Nanoskiving: a new method to produce arrays of nanostructures. Acc. Chem. Res. 41, 1566–1577 (2008).

    Article  CAS  Google Scholar 

  19. Gates, B.D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    Article  CAS  Google Scholar 

  20. Ginger, D.S., Zhang, H. & Mirkin, C.A. Angew. Chem. Int. Ed. Engl. 43, 30–45 (2004).

    Article  Google Scholar 

  21. Geissler, M. & Xia, Y. Patterning: principles and some new developments. Adv. Mater. 16, 1249–1269 (2004).

    Article  CAS  Google Scholar 

  22. Love, J.C. et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    Article  CAS  Google Scholar 

  23. George, J. Preparation of Thin Films (Marcel Dekker, New York, 1992).

  24. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M. & Ingber, D.E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  25. von Philipsborn, A.C. et al. Microcontact printing of axon guidance molecules for generation of graded patterns. Nat. Protoc. 1, 1322–1328 (2006).

    Article  CAS  Google Scholar 

  26. McDonald, J.C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    Article  CAS  Google Scholar 

  27. Chung, K., Crane, M. & Lu, H. Automated on-chip imaging and sorting of C. elegans. Nat. Protoc. 4 (2009); DOI: 10.1038/nprot.2009.105.

  28. Sidorova, J.M., Li, N., Schwartz, D.C., Folch, A. & Monnat, R.J. Microfluidic-assisted analysis of replicating DNA molecules. Nat. Protoc. 4, 849–861 (2009).

    Article  CAS  Google Scholar 

  29. Ogunniyi, A.O., Story, C.M., Papa, E., Guillen, E. & Love, J.C. Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat. Protoc. 4, 767–782 (2009).

    Article  CAS  Google Scholar 

  30. Paguirigan, A.L. & Beebe, D.J. Protocol for the fabrication of enzymatically crosslinked gelatin microchannels for microfluidic cell culture. Nat. Protoc. 2, 1782–1788 (2007).

    Article  CAS  Google Scholar 

  31. Park, J.W., Vahidi, B., Taylor, A.M., Rhee, S.W. & Jeon, N.L. Microfluidic culture platform for neuroscience research. Nat. Protoc. 1, 2128–2136 (2006).

    Article  CAS  Google Scholar 

  32. Tourovskaia, A. & Figueroa-Masot, X. & Floch, A . Long-term microfluidic cultures of myotube microarrays for high-throughput focal simulation. Nat. Protoc. 1, 1092–1104 (2006).

    Article  CAS  Google Scholar 

  33. Semlyen, J.A. & Clarson, S.J. (eds). Silicone Polymers (Prentice-Hall, Englewood, New Jersey, 1993).

  34. Hillborg, H. et al. Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41, 6851–6863 (2000).

    Article  CAS  Google Scholar 

  35. Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  36. Zheng, B., Tice, J.D. & Ismagilov, R.F. Formation of arrayed droplets by soft lithography and two-phase fluidic flow, and application in protein crystallization. Adv. Mater. 16, 1365–1368 (2004).

    Article  CAS  Google Scholar 

  37. Xia, Y., Rogers, J.A., Paul, K.E. & Whitesides, G.M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999).

    Article  CAS  Google Scholar 

  38. Anderson, B.B., Burgess, L.W. & Brodsky, A.M. Grating light reflection spectroscopy of colloids and suspensions. Langmuir 13, 4273–4279 (1997).

    Article  CAS  Google Scholar 

  39. Lee, K.-H. et al. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens. Bioelectron. 23, 466–472 (2007).

    Article  CAS  Google Scholar 

  40. Stewart, M.E. et al. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. USA 103, 17143–17148 (2006).

    Article  CAS  Google Scholar 

  41. Backofen, U., Matysik, F.-M. & Lunte, C.E. A chip-based electrophoresis system with electrochemical detection and hydrodynamic injection. Anal. Chem. 74, 4054–4059 (2002).

    Article  CAS  Google Scholar 

  42. Qin, D., Xia, Y. & Whitesides, G.M. Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv. Mater. 8, 917–919 (1996).

    Article  CAS  Google Scholar 

  43. Xia, Y., Tien, J., Qin, D. & Whitesides, G.M. Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing. Langmuir 12, 4033–4038 (1996).

    Article  CAS  Google Scholar 

  44. Odom, T.W. et al. Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314–5320 (2002).

    Article  CAS  Google Scholar 

  45. Xia, Y., Kim, E. & Whitesides, G.M. Microcontact printing of alkanethiols on silver and its application in microfabrication. J. Electrochem. Soc. 143, 1070–1079 (1996).

    Article  CAS  Google Scholar 

  46. Love, J.C. et al. Self-assembled monolayers of alkanethiolates on palladium are good etch resists. J. Am. Chem. Soc. 124, 1576–1577 (2002).

    Article  CAS  Google Scholar 

  47. Geissler, M., Chen, J. & Xia, Y. Comparative study of monolayers self-assembled from octadecylisocyanide and octadecanethiol on polycrystalline Pt substrates. Langmuir 20, 6993–6997 (2004).

    Article  CAS  Google Scholar 

  48. Xia, Y., Mrksich, M., Kim, E. & Whitesides, G.M. Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication. J. Am. Chem. Soc. 117, 9576–9577 (1995).

    Article  CAS  Google Scholar 

  49. Mrksich, M. & Whitesides, G.M. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Ann. Rev. Biophys. Biomol. Struct. 25, 55–78 (1996).

    Article  CAS  Google Scholar 

  50. Jiang, X., Bruzewicz, D.A., Thant, M.M. & Whitesides, G.M. Palladium as a substrate for self-assembled monolayers used in biotechnology. Anal. Chem. 76, 6116–6121 (2004).

    Article  CAS  Google Scholar 

  51. Bernard, A. et al. Printing patterns of proteins. Langmuir 14, 2225–2229 (1998).

    Article  CAS  Google Scholar 

  52. Weibel, D.B. et al. A bacterial printing press that regenerates its ink: contact printing bacteria using hydrogel stamps. Langmuir 21, 6436–6442 (2005).

    Article  CAS  Google Scholar 

  53. Stevens, M.M. et al. Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials 26, 7636–7641 (2005).

    Article  CAS  Google Scholar 

  54. Gates, B.D. & Whitesides, G.M. Replica molding of vertical features smaller than 2 nm by soft lithography. J. Am. Chem. Soc. 125, 14986–14987 (2003).

    Article  CAS  Google Scholar 

  55. Xia, Y. et al. Complex optical surfaces by replica molding against elastomeric masters. Science 273, 347–349 (1996).

    Article  CAS  Google Scholar 

  56. Chou, S.Y., Krauss, P.R. & Renstrom, P.J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  CAS  Google Scholar 

  57. Xia, Y., Zhao, X.-M., Kim, E. & Whitesides, G.M. A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold, silver and copper. Chem. Mater. 7, 2332–2337 (1995).

    Article  CAS  Google Scholar 

  58. Delamarche, E., Schmid, H., Michel, B. & Biebuyck, H. Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 9, 741–746 (1997).

    Article  CAS  Google Scholar 

  59. Xia, Y. & Whitesides, G.M. Use of controlled reactive spreading of liquid alkanethiol on the surface of gold to modify the size of features produced by microcontact printing. J. Am. Chem. Soc. 117, 3274–3275 (1995).

    Article  CAS  Google Scholar 

  60. Palacin, S. et al. Patterning with magnetic materials at the micron scale. Chem. Mater. 8, 1316–1325 (1996).

    Article  CAS  Google Scholar 

  61. Biebuyck, H., Larsen, N.B., Delamarche, E. & Michel, B. Lithography beyond light: macrocontact printing with monolayer resist. IBM J. Res. Develop. 41, 159–170 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Both Washington University and Harvard University are members of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under award no. ECS-0335765.

Author information

Authors and Affiliations

Authors

Contributions

D.Q. is responsible for all the experiments described in this article and preparation of the paper; Y.X. is partially responsible for experimental planning and preparation of the paper; and G.M.W. is responsible for providing guidance for the experiments and for editing and proofreading the paper.

Corresponding author

Correspondence to George M Whitesides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, D., Xia, Y. & Whitesides, G. Soft lithography for micro- and nanoscale patterning. Nat Protoc 5, 491–502 (2010). https://doi.org/10.1038/nprot.2009.234

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2009.234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing