Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A vision for the National Cancer Program in the United States

Abstract

The intersection of two noble endeavors — the scientists' quest to understand life itself and the physicians' dedication to relieve suffering and prolong life — came into sharp focus in 1971 with the United States National Cancer Act. This focus has led to an exponential expansion of our understanding of cancer at the genetic, molecular and cellular levels, and concomitant advances in our ability to disrupt the disease process through prevention, early detection and successful treatment. At the National Cancer Institute we are committed to capitalize on these achievements. A new era is now within our grasp, a time when no one suffers or dies as a result of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Cancer Biomedical Informatics Grid.
Figure 2: Integration enabled by caBIG.
Figure 3: Integrated physical-interaction network.

Similar content being viewed by others

References

  1. Leaf, C. Why we're losing the war on cancer (and how to win it). Fortune 149, 76–97 (2004).

    PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kitano, H. Cancer robustness: tumour tactics. Nature 426, 125–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Pantschenko, A. G. et al. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Intl. J. Oncol. 23, 269–284 (2003).

    CAS  Google Scholar 

  5. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Silva, G. A. Introduction to nanotechnology and its applications to medicine. Surg. Oncol. 61, 216–220 (2004).

    Google Scholar 

  7. Etzioni, R. et al. The case for early detection. Nature Rev. Cancer 3, 2–10 (2003).

    Article  Google Scholar 

  8. Conrads, T. P. et al. High-resolution serum proteomic features for ovarian cancer detection. Endocr. Relat. Cancer 11, 163–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Petricoin, E. F. et al. Serum proteomic patterns for detection of prostate cancer. Brief Communications. J. Natl Cancer Inst. 94, 1576–1578 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. National Cancer Institute. NCI and FDA Announce Joint Program to Streamline Cancer Drug Development [online], <http://www.cancer.gov/newscenter/pressreleases/NciFdaCollab> (2003).

  12. Staudt, L. M. Molecular diagnosis of the hematologic cancers. N. Engl. J. Med. 348, 1777–1785 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Druker, B. J., O'Brien, S. G., Cortes, J. & Radich, J. Chronic myelogenous leukemia. Hematology 1, 111–135 (2002).

    Article  Google Scholar 

  14. Druker, B. J. Perspective on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Logrono, R., Jones, D. V., Faruqi, S. & Bhutani, M. S. Recent advances in cell biology, diagnosis and therapy of gastrointestinal stromal tumor (GIST). Cancer Biol. Ther. 3, 251–258 (2004).

    Article  PubMed  Google Scholar 

  17. Paez, J. G. et al. EGFR mutation in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. National Cancer Institute. NCI Awards $42 Million to Fund New Cancer Prevention Clinical Trials Consortium to Study Promising New Agents [online], <http://www.cancer.gov/newscenter/pressreleases/preventtrials> (2003).

  19. Koutsky, L. A. et al. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med. 347, 1645–1651 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Gross, P. E. et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N. Engl. J. Med. 349, 1793–1802 (2003).

    Article  Google Scholar 

  21. Hawk, E. T. et al. Cancer and the cyclooxygenase enzymes: implications for the treatment and prevention of cancer. Am. J. Cancer 2, 27–55 (2003).

    Article  CAS  Google Scholar 

  22. Steinbach, G. et al. The effect of celecoxib, a cycloxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Centers for Disease Control and Prevention. Annual smoking-attributable mortality, years of potential life lost, and economic costs — United States, 1995–1999. MMWR Morb. Mortal. Wkly Rep. 51, 300–303 (2002).

  24. Centers for Disease Control and Prevention. Cigarette Smoking Among Adults — United Stated, 2002. MMWR Morb. Mortal. Wkly Rep. 53, 427–431 (2004).

  25. Murray, C. J. & Lopez, A. D. (eds) The Global Burden of Disease 183 (Harvard Univ., Cambridge, 1996).

    Google Scholar 

  26. Jha, P. Curbing the Epidemic: Governments and the Economics of Tobacco Control Ch. 1 (The World Bank, Washington, 1999).

    Google Scholar 

  27. National Cancer Institute. NCI Awards First Funding for Consortium of Cohorts Initiative [online], <http://www.nci.nih.gov/newscenter/pressreleases/cohortconsortium> (2003).

  28. Grove, A. Only the Paranoid Survive: How to Exploit the Crisis Points That Challenge Every Company (Doubleday, New York, 1999)

    Google Scholar 

  29. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duxbury, M. S. & Whang, E. E. RNA interference: a practical approach. J. Sur. Res. 117, 339–344 (2004).

    Article  CAS  Google Scholar 

  32. National Cancer Institute. The Nation's Investment in Cancer Research: a Plan and Budget Proposal for Fiscal Year 2005. NIH Publication No. 03-5446 [online], <http://cancer.gov/pdf/nci_2005_plan> (2003).

  33. Jackson, E. L. et al. Analysis of lung tumor initiative and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagase, H., Mao, J. H., deKoning, J. P., Minami, T., & Balmain, A. Epistatic interactions between skin tumor modifier loci in interspecific (spretus/musculus) backcross mice. Cancer Res. 61, 1305–1308 (2001).

    CAS  PubMed  Google Scholar 

  35. Rajasekhar, V. K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell. 12, 889–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, 385–396 (2003).

    Article  CAS  Google Scholar 

  37. Liu, P. T., Jenkins, N. A. & Copeland, N. G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank K. O. Weber of the Food and Drug Administration for providing information for Table 1.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

chronic myelogenous leukaemia

colorectal cancer

lung cancer

multiple myeloma

non-Hodgkin's lymphoma

ovarian cancer

prostate cancer

Entrez Gene

ABL

BCR

COX2

EGFR

OMIM

familial adenomatous polyposis

gastrointestinal stromal tumours

FURTHER INFORMATION

Cancer Biomedical Informatics Grid

Digital Mammography Imaging Screening Trial

Innovative Molecular Analysis Technologies Program

Integrative Cancer Biology Program

In vivo Cellular and Molecular Imaging Centers

Mouse Models of Human Cancers Consortium

Mouse Repository

National Lung Screening Trial

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Eschenbach, A. A vision for the National Cancer Program in the United States. Nat Rev Cancer 4, 820–828 (2004). https://doi.org/10.1038/nrc1458

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrc1458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing