Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolving field of biodefence: therapeutic developments and diagnostics

Key Points

  • Bioweapons are a clear threat to both military and civilian populations. Here, the latest advances in the pursuit of inhibitors against biothreat threat toxins, current therapeutic strategies for treating biodefence related pathogens, and strategies for improving detection and exposure survivability are covered.

  • There are numerous lead therapeutics that have emerged from drug discovery efforts. However, many of these are toxic and/or fail to possess conventional drug-like properties. One clear advantage of small (non-peptidic) molecules is that they possess scaffolds that are inherently more likely to evolve into real therapeutics.

  • One of the major obstacles impeding the translation of these lead therapeutics into viable drugs is the lack of involvement of the pharmaceutical industry, which has been discovering leads and translating them into drugs for decades. The expertise of the pharmaceutical industry therefore needs to be more effectively engaged in developing drugs against biothreat agents.

  • New methods for rapidly detecting and diagnosing biothreat agents are also in development. The detection and diagnosis of biothreats is inherently linked with treatment. The means for detecting the release of bioweapons are being deployed, and new technologies are shortening the timeframe between initial sample collection and conclusive agent determination. However, the organization of this process is imperfect.

  • At present, a unifying entity that orchestrates the biodefence response is clearly needed to reduce the time-to-drug process and redundancies in drug development efforts. Such a central entity could formulate and implement plans to coordinate all participants, including academic institutions, government agencies and the private sector. This could accelerate the development of countermeasures against high probability biothreat agents.

Abstract

The threat of bioterrorism and the potential use of biological weapons against both military and civilian populations has become a major concern for governments around the world. For example, in 2001 anthrax-tainted letters resulted in several deaths, caused widespread public panic and exerted a heavy economic toll. If such a small-scale act of bioterrorism could have such a huge impact, then the effects of a large-scale attack would be catastrophic. This review covers recent progress in developing therapeutic countermeasures against, and diagnostics for, such agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of anthrax toxin (ATX) lethal factor cell entry.
Figure 2: Toxin interactions with inhibitors (a–c) or other proteins (d).
Figure 3: A schematic of how components of the national laboratory response network (LRN) coordinate when detecting and diagnosing a biothreat agent.

Similar content being viewed by others

References

  1. Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Vitale, G. et al. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem. Biophys. Res. Commun. 248, 706–711 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Drum, C. L. et al. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature 415, 396–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Scobie, H. M., Rainey, G. J., Bradley, K. A. & Young, J. A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl Acad. Sci. USA 100, 5170–5174 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J. & Young, J. A. Identification of the cellular receptor for anthrax toxin. Nature 414, 225–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Santelli, E., Bankston, L. A., Leppla, S. H. & Liddington, R. C. Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature 430, 905–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Klimpel, K. R., Molloy, S. S., Thomas, G. & Leppla, S. H. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc. Natl Acad. Sci. USA 89, 10277–10281 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cameron, A., Appel, J., Houghten, R. A. & Lindberg, I. Polyarginines are potent furin inhibitors. J. Biol. Chem. 275, 36741–36749 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Sarac, M. S., Peinado, J. R., Leppla, S. H. & Lindberg, I. Protection against anthrax toxemia by hexa-d-arginine in vitro and in vivo. Infect. Immun. 72, 602–605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kacprzak, M. M. et al. Inhibition of furin by polyarginine-containing peptides: nanomolar inhibition by nona-d-arginine. J. Biol. Chem. 279, 36788–36794 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Sellman, B. R., Mourez, M. & Collier, R. J. Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science 292, 695–697 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Singh, Y., Khanna, H., Chopra, A. P. & Mehra, V. A dominant negative mutant of Bacillus anthracis protective antigen inhibits anthrax toxin action in vivo. J. Biol. Chem. 276, 22090–22094 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Mourez, M. et al. Designing a polyvalent inhibitor of anthrax toxin. Nature Biotechnol. 19, 958–961 (2001).

    Article  CAS  Google Scholar 

  14. Nguyen, T. L. Three-dimensional model of the pore form of anthrax protective antigen. Structure and biological implications. J. Biomol. Struct. Dyn. 22, 253–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hammond, S. E. & Hanna, P. C. Lethal factor active-site mutations affect catalytic activity in vitro. Infect. Immun. 66, 2374–2378 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tonello, F., Seveso, M., Marin, O., Mock, M. & Montecucco, C. Screening inhibitors of anthrax lethal factor. Nature 418, 386 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Turk, B. E. et al. The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nature Struct. Mol. Biol. 11, 60–66 (2004).

    Article  CAS  Google Scholar 

  18. Cummings, R. T. et al. A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease. Proc. Natl Acad. Sci. USA 99, 6603–6606 (2002). describe peptide substrates for lethal factor and have greatly facilitated the identification of therapeutics against anthrax lethal toxin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panchal, R. G. et al. Identification of small molecule inhibitors of anthrax lethal factor. Nature Struct. Mol. Biol. 11, 67–72 (2004). This paper describes the first small molecule (nonpeptidic) inhibitors of LF, and includes X-ray co-crystal data of the most potent of the discovered compounds bound within the LF substrate binding cleft.

    Article  CAS  Google Scholar 

  20. Min, D. H., Tang, W. J. & Mrksich, M. Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nature Biotechnol. 22, 717–723 (2004).

    Article  CAS  Google Scholar 

  21. Dell'Aica, I. et al. Potent inhibitors of anthrax lethal factor from green tea. EMBO Rep. 5, 418–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, L. V. et al. Inhibition of the proteolytic activity of anthrax lethal factor by aminoglycosides. J. Am. Chem. Soc. 126, 4774–4775 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Soelaiman, S. et al. Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough. J. Biol. Chem. 278, 25990–25997 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Shen, Y. et al. Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Proc. Natl Acad. Sci. USA 101, 3242–3247 (2004). This research describes how an existing, FDA approved drug was found to be a highly potent inhibitor of anthrax edema factor. Such 'drug recycling' represents a highly efficient means of fast-tracking new treatments against biological weapons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paddle, B. M. Therapy and prophylaxis of inhaled biological toxins. J. Appl. Toxicol. 23, 139–170 (2003). A good review of inhaled biological toxin toxicities, host responses, and mechanisms of action.

    Article  CAS  PubMed  Google Scholar 

  26. Rainey, G. J. A. & Young, J. A. T. Antitoxins: novel strategies to target agents of bioterrorism. Nature Rev. Microbiol. 2, 721–726 (2004). An excellent resource for reviewing the mechanisms of action of several biological toxins.

    Article  Google Scholar 

  27. Dong, M. et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell. Biol. 162, 1293–1303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yowler, B. C., Kensinger, R. D. & Schengrund, C. L. Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J. Biol. Chem. 277, 32815–32819 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Arnon, S. S. et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA 285, 1059–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Singh, B. R. Intimate details of the most poisonous poison. Nature Struct. Biol. 7, 617–619 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Turton, K., Chaddock, J. A. & Acharya, K. R. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem. Sci. 27, 552–558 (2002). Provides a good overview of botulinum neurotoxin structure, function, and medical applications.

    Article  CAS  PubMed  Google Scholar 

  32. Deshpande, S. S., Sheridan, R. E. & Adler, M. Efficacy of certain quinolines as pharmacological antagonists in botulinum neurotoxin poisoning. Toxicon 35, 433–445 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sheridan, R. E., Deshpande, S. S., Nicholson, J. D. & Adler, M. Structural features of aminoquinolines necessary for antagonist activity against botulinum neurotoxin. Toxicon 35, 1439–1451 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Eswaramoorthy, S., Kumaran, D. & Swaminathan, S. Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr. D Biol. Crystallogr. 57, 1743–1746 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Hayden, J., Pires, J., Roy, S., Hamilton, M. & Moore, G. J. Discovery and design of novel inhibitors of botulinus neurotoxin A: targeted 'hinge' peptide libraries. J. Appl. Toxicol. 23, 1–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt, J. J. & Stafford, R. G. A high-affinity competitive inhibitor of type A botulinum neurotoxin protease activity. FEBS Lett. 532, 423–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt, J. J. & Bostian, K. A. Proteolysis of synthetic peptides by type A botulinum neurotoxin. J. Protein Chem. 14, 703–708 (1995). This work describes several peptide substrates for botulinum toxin serotype A with major implications for the identification of therapeutics for other botulinum neurotoxins.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt, J. J. & Bostian, K. A. Endoproteinase activity of type A botulinum neurotoxin: substrate requirements and activation by serum albumin. J. Protein Chem. 16, 19–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt, J. J., Stafford, R. G. & Bostian, K. A. Type A botulinum neurotoxin proteolytic activity: development of competitive inhibitors and implications for substrate specificity at the S1' binding subsite. FEBS Lett. 435, 61–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Sukonpan, C. et al. Synthesis of substrates and inhibitors of botulinum neurotoxin type A metalloprotease. J. Pept. Res. 63, 181–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Burnett, J. C. et al. Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochem. Biophys. Res. Commun. 310, 84–93 (2003). The first small molecule (non-peptidic) inhibitors of botulinum neurotoxin serotype A are described, and a pharmacophore for inhibition is proposed.

    Article  CAS  PubMed  Google Scholar 

  42. Segelke, B., Knapp, M., Kadkhodayan, S., Balhorn, R. & Rupp, B. Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity. Proc. Natl Acad. Sci. USA 101, 6888–6893 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R. & Stevens, R. C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nature Struct. Biol. 5, 898–902 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Breidenbach, M. A. & Brunger, A. T. Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432, 925–929 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, J. Y., Wang, Z. F., Ren, X. M., Tang, M. Z. & Shi, Y. L. Antagonism of botulinum toxin type A-induced cleavage of SNAP-25 in rat cerebral synaptosome by toosendanin. FEBS Lett. 555, 375–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Adler, M., Nicholson, J. D., Cornille, F. & Hackley, B. E., Jr. Efficacy of a novel metalloprotease inhibitor on botulinum neurotoxin B activity. FEBS Lett. 429, 234–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Eswaramoorthy, S., Kumaran, D. & Swaminathan, S. A novel mechanism for Clostridium botulinum neurotoxin inhibition. Biochemistry 41, 9795–9802 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Adler, M. et al. Evaluation of phosphoramidon and three synthetic phosphonates for inhibition of botulinum neurotoxin B catalytic activity. J. Appl. Toxicol. 19 (Suppl. 1), S5–S11 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Garcia, G. E., Moorad, D. R. & Gordon, R. K. Buforin I, a natural peptide, inhibits botulinum neurotoxin B activity in vitro. J. Appl. Toxicol. 19 (Suppl. 1), S19–S22 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Schmidt, J. J. & Stafford, R. G. Fluorigenic substrates for the protease activities of botulinum neurotoxins, serotypes A, B, and F. Appl. Environ. Microbiol. 69, 297–303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roques, B. P., Anne, C., Turcaud, S. & Fournie-Zaluski, M. C. Mechanism of action of clostridial neurotoxins and rational inhibitor design. Biol. Cell. 92, 445–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Anne, C. et al. Development of potent inhibitors of botulinum neurotoxin type B. J. Med. Chem. 46, 4648–4656 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Anne, C. et al. Thio-derived disulfides as potent inhibitors of botulinum neurotoxin type B: implications for zinc interaction. Bioorg. Med. Chem. 11, 4655–4660 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Blommaert, A., Turcaud, S., Anne, C. & Roques, B. P. Small tripeptide surrogates with low nanomolar affinity as potent inhibitors of the botulinum neurotoxin B metallo-proteolytic activity. Bioorg. Med. Chem. 12, 3055–3062 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Monzingo, A. F. & Robertus, J. D. X-ray analysis of substrate analogs in the ricin A-chain active site. J. Mol. Biol. 227, 1136–1145 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Yan, X. et al. Structure-based identification of a ricin inhibitor. J. Mol. Biol. 266, 1043–1049 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Miller, D. J., Ravikumar, K., Shen, H., Suh, J. K., Kerwin, S. M., Robertus, J. D. Structure-based design and characterization of novel platforms for ricin and shiga toxin inhibition. J. Med. Chem. 45, 90–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Nimjee, S. M., Rusconi, C. P. & Sullenger, B. A. APTAMERS: an emerging class of therapeutics. Annu. Rev. Med. 56, 555–583 (2005). The review gives and account of the evolution of aptamers as therapeutics and speculates on the clinical usefulness of these compounds.

    Article  CAS  PubMed  Google Scholar 

  59. Hesselberth, J. R., Miller, D., Robertus, J. & Ellington, A. D. In vitro selection of RNA molecules that inhibit the activity of ricin A-chain. J. Biol. Chem. 275, 4937–4942 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Tanaka, K. S. et al. Ricin A-chain inhibitors resembling the oxacarbenium ion transition state. Biochemistry 40, 6845–6851 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, X. Y., Link, T. M. & Schramm, V. L. Ricin A-chain: kinetics, mechanism, and RNA stem-loop inhibitors. Biochemistry 37, 11605–11613 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Schlievert, P. M. Use of intravenous immunoglobulin in the treatment of staphylococcal and streptococcal toxic shock syndromes and related illnesses. J. Allergy Clin. Immunol. 108, S107–S110 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. LeClaire, R. D., Kell, W., Bavari, S., Smith, T. J. & Hunt, R. E. Protective effects of niacinamide in staphylococcal enterotoxin-B-induced toxicity. Toxicology 107, 69–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Tarkowski, A. et al. Microbial superantigens as virulence factors and ways to counteract their actions. Scand. J. Infect. Dis. 35, 642–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Kieke, M. C. et al. High affinity T cell receptors from yeast display libraries block T cell activation by superantigens. J. Mol. Biol. 307, 1305–1315 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hong-Geller, E. & Gupta, G. Therapeutic approaches to superantigen-based diseases: a review. J. Mol. Recognit. 16, 91–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Shailubhai, K. Bioterrorism: a new frontier for drug discovery and development. IDrugs 6, 773–780 (2003).

    CAS  PubMed  Google Scholar 

  68. Kaempfer, R. Peptide antagonists of superantigen toxins. Mol. Divers. 8, 113–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Rajagopalan, G., Sen, M. M. & David, C. S. In vitro and in vivo evaluation of staphylococcal superantigen peptide antagonists. Infect. Immun. 72, 6733–6737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arad, G., Levy, R., Hillman, D. & Kaempfer, R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nature Med. 6, 414–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol. 30, 115–133 (2004). Review that covers antiviral drugs in clinical use.

    Article  CAS  PubMed  Google Scholar 

  72. Chan, S. Y. et al. Folate receptor-α is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 106, 117–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Becker, S., Spiess, M. & Klenk, H. D. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J. Gen. Virol. 76 (Pt 2), 393–399 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Takada, A. et al. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J. Virol. 78, 2943–2947 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Simmons, G. et al. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305, 115–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Barrientos, L. G. & Gronenborn, A. M. The highly specific carbohydrate-binding protein cyanovirin-n: structure, anti-HIV/ebola activity and possibilities for therapy. Mini. Rev. Med. Chem. 5, 21–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Harrison, S. C. et al. Discovery of antivirals against smallpox. Proc. Natl Acad. Sci. USA 101, 11178–11192 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Watanabe, S. et al. Functional importance of the coiled-coil of the Ebola virus glycoprotein. J. Virol. 74, 10194–10201 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weissenhorn, W., Calder, L. J., Wharton, S. A., Skehel, J. J. & Wiley, D. C. The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc. Natl Acad. Sci. USA 95, 6032–6036 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weissenhorn, W., Carfi, A., Lee, K. H., Skehel, J. J. & Wiley, D. C. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell 2, 605–616 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Aman, M. J. et al. Molecular mechanisms of filovirus cellular trafficking. Microbes Infect. 5, 639–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Goodchild, J. Oligonucleotide, antibody and peptide therapeutics — from design to the clinic. Curr. Opin. Mol. Ther. 6, 119 (2004).

    PubMed  Google Scholar 

  83. Muhlberger, E., Weik, M., Volchkov, V. E., Klenk, H. D. & Becker, S. Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J. Virol. 73, 2333–2342 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Towner, J. S. et al. Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology 332, 20–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Siegert, R., Shu, H. L. & Slenczka, W. Isolation and identification of the 'Marbury virus'. Ger. Med. Mon. 13, 514–518 (1968).

    CAS  PubMed  Google Scholar 

  86. Geisbert, T. W. & Jahrling, P. B. Differentiation of filoviruses by electron microscopy. Virus Res. 39, 129–150 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Bavari, S. et al. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J. Exp. Med. 195, 593–602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Neumann, G., Feldmann, H., Watanabe, S., Lukashevich, I. & Kawaoka, Y. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J. Virol. 76, 406–410 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cono, J., Casey, C. G. & Bell, D. M. Smallpox vaccination and adverse reactions. Guidance for clinicians. MMWR Recomm. Rep. 52, 1–28 (2003).

    PubMed  Google Scholar 

  90. Geisbert, T. W. et al. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J. Infect. Dis. 188, 1618–1629 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Geisbert, T. W. et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362, 1953–1958 (2003). This is one of the first examples of host-directed therapeutics for filoviruses. The report suggests the therapeutic targeting of the sequential lifecycles of pathogenic filoviruses, such as the coagulation processes, may have beneficial outcomes.

    Article  CAS  PubMed  Google Scholar 

  92. Schmaljohn, A. L., Johnson, E. D., Dalrymple, J. M. & Cole, G. A. Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis. Nature 297, 70–72 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. Hart, M. K. Vaccine research efforts for filoviruses. Int J Parasitol 33, 583–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Hevey, M., Negley, D., Geisbert, J., Jahrling, P. & Schmaljohn, A. Antigenicity and vaccine potential of Marburg virus glycoprotein expressed by baculovirus recombinants. Virology 239, 206–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Hevey, M., Negley, D. & Schmaljohn, A. Characterization of monoclonal antibodies to Marburg virus (strain Musoke) glycoprotein and identification of two protective epitopes. Virology 314, 350–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Wilson, J. A. et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science 287, 1664–1666 (2000). The first report of a monoclonal antibody treatment for ebola virus that showed in vivo protection.

    Article  CAS  PubMed  Google Scholar 

  97. Jahrling, P. B. et al. Passive immunization of Ebola virus-infected cynomolgus monkeys with immunoglobulin from hyperimmune horses. Arch. Virol. Suppl. 11, 135–140 (1996).

    CAS  PubMed  Google Scholar 

  98. Hevey, M., Negley, D., Pushko, P., Smith, J. & Schmaljohn, A. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 251, 28–37 (1998). The first demonstration of an efficacious vaccine against filoviruses.

    Article  CAS  PubMed  Google Scholar 

  99. Ignatyev, G. M. Immune response to filovirus infections. Curr. Top. Microbiol. Immunol. 235, 205–217 (1999).

    CAS  PubMed  Google Scholar 

  100. Vanderzanden, L. et al. DNA vaccines expressing either the GP or NP genes of Ebola virus protect mice from lethal challenge. Virology 246, 134–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Wilson, J. A. & Hart, M. K. Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. J. Virol. 75, 2660–2664 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu, L. et al. Immunization for Ebola virus infection. Nature Med. 4, 37–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Martini, G. A. a. R. S. Marburg Virus Disease (Springer–Verlag, Berlin New York, 1971).

    Book  Google Scholar 

  104. Mupapa, K. et al. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. International Scientific and Technical Committee. J. Infect. Dis. 179 (Suppl. 1), S18–S23 (1999).

    Article  PubMed  Google Scholar 

  105. Boulter, E. A. & Appleyard, G. Differences between extracellular and intracellular forms of poxvirus and their implications. Prog. Med. Virol. 16, 86–108 (1973).

    CAS  PubMed  Google Scholar 

  106. Hooper, J. W., Custer, D. M., Schmaljohn, C. S. & Schmaljohn, A. L. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology 266, 329–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Hooper, J. W. et al. Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J. Virol. 78, 4433–4443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Galmiche, M. C., Goenaga, J., Wittek, R. & Rindisbacher, L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Schmaljohn, A. L., Kokubun, K. M. & Cole, G. A. Protective monoclonal antibodies define maturational and pH-dependent antigenic changes in Sindbis virus E1 glycoprotein. Virology 130, 144–154 (1983).

    Article  CAS  PubMed  Google Scholar 

  110. Bell, E. et al. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 325, 425–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Mohamadzadeh, M. & Luftig, R. Dendritic cells: in the forefront of immunopathogenesis and vaccine development — a review. J. Immune Based Ther. Vaccines 2, 1 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Palese, P., Muster, T., Zheng, H., O'Neill, R. & Garcia-Sastre, A. Learning from our foes: a novel vaccine concept for influenza virus. Arch. Virol. Suppl. 15, 131–138 (1999).

    CAS  PubMed  Google Scholar 

  113. Chang, H. W., Watson, J. C. & Jacobs, B. L. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc. Natl Acad. Sci. USA 89, 4825–4829 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Basler, C. F. et al. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc. Natl Acad. Sci. USA 97, 12289–12294 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bosio, C. M. et al. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J. Infect. Dis. 188, 1630–1638 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Seet, B. T. et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 21, 377–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Warfield, K. L. et al. Ebola virus-like particles protect from lethal Ebola virus infection. Proc. Natl Acad. Sci. USA 100, 15889–15894 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pornillos, O., Garrus, J. E. & Sundquist, W. I. Mechanisms of enveloped RNA virus budding. Trends Cell Biol. 12, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Moss, B. & Ward, B. M. High-speed mass transit for poxviruses on microtubules. Nature Cell Biol. 3, E245–E246 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Bieniasz, P. Intrinsic immunity: a front-line defense against viral attack. Nature Immunol. 5, 1109–1115 (2004).

    Article  CAS  Google Scholar 

  121. Grandvaux, N., tenOever, B. R., Servant, M. J. & Hiscott, J. The interferon antiviral response: from viral invasion to evasion. Curr. Opin. Infect. Dis. 15, 259–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Heine H., D. R. a. A. G. in 41st Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago, IL, 2001).

  123. Heine H., D. R. a. B. W. in 40th Interscience Conference on Antimicrobial Agents and Chemotherapy (Toronto, Canada, 2000).

  124. Inglesby, T. V. et al. Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA 287, 2236–2252 (2002).

    Article  PubMed  Google Scholar 

  125. Bartlett, J. G., Inglesby, T. V., Jr. & Borio, L. Management of anthrax. Clin. Infect. Dis. 35, 851–858 (2002).

    Article  PubMed  Google Scholar 

  126. Pomerantsev, A. P., Shishkova, N. A. & Marinin, L. I. [Comparison of therapeutic effects of antibiotics of the tetracycline group in the treatment of anthrax caused by a strain inheriting tet-gene of plasmid pBC16]. Antibiot. Khimioter. 37, 31–34 (1992).

    CAS  PubMed  Google Scholar 

  127. Stepanov, A. V., Marinin, L. I., Pomerantsev, A. P. & Staritsin, N. A. Development of novel vaccines against anthrax in man. J. Biotechnol. 44, 155–160 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Vasi'lev, N. T. et al. [Sensitivity spectrum of Francisella tularensis to antibiotics and synthetic antibacterial drugs]. Antibiot. Khimioter. 34, 662–665 (1989).

    CAS  PubMed  Google Scholar 

  129. Scheel, O., Hoel, T., Sandvik, T. & Berdal, B. P. Susceptibility pattern of Scandinavian Francisella tularensis isolates with regard to oral and parenteral antimicrobial agents. APMIS 101, 33–36 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Maurin, M., Mersali, N. F. & Raoult, D. Bactericidal activities of antibiotics against intracellular Francisella tularensis. Antimicrob. Agents Chemother. 44, 3428–3431 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kudelina, R. I. & Olsufiev, N. G. Sensitivity to macrolide antibiotics and lincomycin in Francisella tularensis holarctica. J. Hyg. Epidemiol. Microbiol. Immunol. 24, 84–91 (1980).

    CAS  PubMed  Google Scholar 

  132. Ikaheimo, I., Syrjala, H., Karhukorpi, J., Schildt, R. & Koskela, M. In vitro antibiotic susceptibility of Francisella tularensis isolated from humans and animals. J. Antimicrob. Chemother. 46, 287–290 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Baker, C. N., Hollis, D. G. & Thornsberry, C. Antimicrobial susceptibility testing of Francisella tularensis with a modified Mueller–Hinton broth. J. Clin. Microbiol. 22, 212–215 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dennis, D. T. et al. Tularemia as a biological weapon: medical and public health management. JAMA 285, 2763–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Ellis, J., Oyston, P. C., Green, M. & Titball, R. W. Tularemia. Clin. Microbiol. Rev. 15, 631–646 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Perez-Castrillon, J. L., Bachiller-Luque, P., Martin-Luquero, M., Mena-Martin, F. J. & Herreros, V. Tularemia epidemic in northwestern Spain: clinical description and therapeutic response. Clin. Infect. Dis. 33, 573–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Henchal, E. A., Teska, J. D., Ludwig, G. V., Shoemaker, D. R. & Ezzell, J. W. Current laboratory methods for biological threat agent identification. Clin. Lab. Med. 21, 661–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Gilchrist, M. J. A national laboratory network for bioterrorism: evolution from a prototype network of laboratories performing routine surveillance. Mil. Med. 165, 28–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Gilchrist, M. J. R., W. P., McKinney, J. M., Miller and A. S. Weissfeld Laboratory safety, management and diagnosis of biological agents associated with bioterrorism (ed. Snyder, J. W.) (ASM Press, Washington, DC, 2000).

    Google Scholar 

  140. Jernigan, D. B. et al. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg. Infect. Dis. 8, 1019–1028 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jernigan, J. A. et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg. Infect. Dis. 7, 933–944 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. (Health Alert Network, 2003).

  143. Marburg, J. in Biosecurity 2003 (Washington, DC, 2003).

  144. (National Association of Letter Carriers, 2003).

  145. In U. S. Senate Committee on Environment and Public Works (Environmental Protection Agency, 2001).

  146. Sirisanthana, T., Nelson, K. E., Ezzell, J. W. & Abshire, T. G. Serological studies of patients with cutaneous and oral-oropharyngeal anthrax from northern Thailand. Am. J. Trop. Med. Hyg. 39, 575–581 (1988).

    Article  CAS  PubMed  Google Scholar 

  147. Hofstadler, S. A. et al. TIGER: the universal biosensor. Intl J. Mass Spectrometry 12844, 1–18 (2004).

    Google Scholar 

  148. Kasianowicz, J. J. & Bezrukov, S. M. Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys. J. 69, 94–105 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kasianowicz, J. J., Henrickson, S. E., Weetall, H. H. & Robertson, B. Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem. 73, 2268–2272 (2001). Describes how nanopores might be able to act as biosensors. This technology has incredible potential as a bioagent sensor.

    Article  CAS  PubMed  Google Scholar 

  151. Relman, D. A. Genome-wide responses of a pathogenic bacterium to its host. J. Clin. Invest. 110, 1071–1073 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Relman, D. A. Shedding light on microbial detection. N. Engl. J. Med. 349, 2162–2163 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Davies, D. H. et al. Profiling the humoral immune response to infection by using proteome microarrays: High-throughput vaccine and diagnostic antigen discovery. Proc. Natl Acad. Sci. USA 102, 547–552 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hertel, L. & Mocarski, E. S. Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US28 function. J. Virol. 78, 11988–12011 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kobayashi, S. D. et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl Acad. Sci. USA 100, 10948–10953 (2003). Shows how innate immune cells can be used as early host-directed diagnosis and how various pathogens alter early responding cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rubins, K. H. et al. The host response to smallpox: analysis of the gene expression program in peripheral blood cells in a nonhuman primate model. Proc. Natl Acad. Sci. USA 101, 15190–15195 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Waters, M. D. & Fostel, J. M. Toxicogenomics and systems toxicology: aims and prospects. Nature Rev. Genet. 5, 936–948 (2004). A good review on the field of toxicogenomics and explains how this field is evolving.

    Article  CAS  PubMed  Google Scholar 

  158. Gilfillan, L. et al. Taking the measure of countermeasures: leaders' views on the nation's capacity to develop biodefense countermeasures. Biosecur. Bioterror. 2, 320–327 (2004). Debates our readiness against a bioterrorist attack and reports the views of several key leaders regarding our capacity to develop solid biodefence countermeasures.

    Article  PubMed  Google Scholar 

  159. Mahanty, S. & Bray, M. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect. Dis. 4, 487–498 (2004). An in-depth review of filoviruses life cycle and pathogenisis.

    Article  CAS  PubMed  Google Scholar 

  160. Borio, L. et al. Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287, 2391–2405 (2002).

    Article  PubMed  Google Scholar 

  161. Bausch, D. G. et al. Risk factors for Marburg hemorrhagic fever, Democratic Republic of the Congo. Emerg. Infect. Dis. 9, 1531–1537 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Leroy, E. M. et al. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 303, 387–390 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Feldmann, H., Jones, S., Klenk, H. D. & Schnittler, H. J. Ebola virus: from discovery to vaccine. Nature Rev. Immunol. 3, 677–685 (2003).

    Article  CAS  Google Scholar 

  164. Geisbert, T. W. & Jahrling, P. B. Towards a vaccine against Ebola virus. Expert Rev. Vaccines 2, 777–789 (2003).

    Article  PubMed  Google Scholar 

  165. Levine, M. M. New Generation Vaccines (ed. Dekker, M.) (Taylor & Francis, New York London, 2004).

    Google Scholar 

  166. Henderson, D. A. et al. Smallpox as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA 281, 2127–2137 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Garbutt, M. et al. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J. Virol. 78, 5458–5465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chen, R. T. & Lane, J. M. Myocarditis: the unexpected return of smallpox vaccine adverse events. Lancet 362, 1345–1346 (2003).

    Article  PubMed  Google Scholar 

  169. Earl, P. L. et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428, 182–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Hsu, V. P. et al. Opening a Bacillus anthracis-containing envelope, Capitol Hill, Washington, D. C. : the public health response. Emerg. Infect. Dis. 8, 1039–1043 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Friedlander, A. M. Textbook of Military Medecine (ed. Zajtchuk, R.) 467–478 (U. S. Department of the Army, Surgeon General and the Borden Institute, Washington, DC, 1997). A good review on Bacillus anthracis pathogeneis.

    Google Scholar 

  172. Brachman, P. S. Inhalation anthrax. Ann. NY Acad. Sci. 353, 83–93 (1980).

    Article  CAS  PubMed  Google Scholar 

  173. Hail, A. S. et al. Comparison of noninvasive sampling sites for early detection of Bacillus anthracis spores from rhesus monkeys after aerosol exposure. Mil. Med. 164, 833–837 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Meltzer, M. I., Damon, I., LeDuc, J. W. & Millar, J. D. Modeling potential responses to smallpox as a bioterrorist weapon. Emerg. Infect. Dis. 7, 959–969 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sandvig, K. & van Deurs, B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 529, 49–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Olsnes, S. & Kozlov, J. V. Ricin. Toxicon 39, 1723–1728 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Endo, Y. & Tsurugi, K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J. Biol. Chem. 263, 8735–8739 (1988).

    CAS  PubMed  Google Scholar 

  178. Lord, M. J. et al. Ricin. Mechanisms of cytotoxicity. Toxicol. Rev. 22, 53–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Endo, Y. & Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 262, 8128–8130 (1987).

    CAS  PubMed  Google Scholar 

  180. Greenfield, R. A. & Bronze, M. S. Prevention and treatment of bacterial diseases caused by bacterial bioterrorism threat agents. Drug Discov. Today 8, 881–888 (2003). A good source for currently available prophylactics and treatments against bacterial bioweapons.

    Article  CAS  PubMed  Google Scholar 

  181. Kozel, T. R. et al. mAbs to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia. Proc. Natl Acad. Sci. USA 101, 5042–5047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Little, S. F., Ivins, B. E., Fellows, P. F., Friedlander, A. M. & 1997. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect. Immun. 65, 5171–5175.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Little, S. F., Leppla, S. H. & Cora, E. Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infect. Immun. 56, 1807–1813 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Maynard, J. A. et al. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nature Biotechnol. 20, 597–601 (2002).

    Article  CAS  Google Scholar 

  185. Sawada-Hirai, R. et al. Human anti-anthrax protective antigen neutralizing monoclonal antibodies derived from donors vaccinated with anthrax vaccine adsorbed. J. Immune Based Ther. Vaccines 2, 5 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Brown, D. R., Lloyd, J. P. & Schmidt, J. J. Identification and characterization of a neutralizing monoclonal antibody against botulinum neurotoxin serotype F, following vaccination with active toxin. Hybridoma 16, 447–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  187. Casadevall, A. Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg. Infect. Dis. 8, 833–841 (2002). A review that covers antibody development for several biowarfare agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chen, F. et al. Antibody mapping to domains of botulinum neurotoxin serotype A in the complexed and uncomplexed forms. Infect. Immun. 65, 1626–1630 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Ferreira, J. L., Hamdy, M. K., McCay, S. G. & Zapatka, F. A. Monoclonal antibody to type F Clostridium botulinum toxin. Appl. Environ. Microbiol. 56, 808–811 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kubota, T. et al. Epitope regions in the heavy chain of Clostridium botulinum type E neurotoxin recognized by monoclonal antibodies. Appl. Environ. Microbiol. 63, 1214–1218 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Marks, J. D. Deciphering antibody properties that lead to potent botulinum neurotoxin neutralization. Mov Disord 19 (Suppl. 8), S101–S108 (2004).

    Article  PubMed  Google Scholar 

  192. Mullaney, B. P., Pallavicini, M. G. & Marks, J. D. Epitope mapping of neutralizing botulinum neurotoxin A antibodies by phage display. Infect. Immun. 69, 6511–654 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nowakowski, A. et al. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl Acad. Sci. USA 99, 11346–11350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pless, D. D., Torres, E. R., Reinke, E. K. & Bavari, S. High-affinity, protective antibodies to the binding domain of botulinum neurotoxin type A. Infect. Immun. 69, 570–574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chanh, T. C. & Hewetson, J. F. Protection against ricin intoxication in vivo by anti-idiotype vaccination. Vaccine 13, 479–485 (1995).

    Article  CAS  PubMed  Google Scholar 

  196. Chanh, T. C., Romanowski, M. J. & Hewetson, J. F. Monoclonal antibody prophylaxis against the in vivo toxicity of ricin in mice. Immunol. Invest. 22, 63–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  197. Lemley, P. V., Amanatides, P. & Wright, D. C. Identification and characterization of a monoclonal antibody that neutralizes ricin toxicity in vitro and in vivo. Hybridoma 13, 417–421 (1994).

    Article  CAS  PubMed  Google Scholar 

  198. Lemley, P. V., Thalley, B. S. & Stafford, D. C. Prophylactic and therapeutic efficacy of an avian antitoxin in ricin intoxication. Ther. Immunol. 2, 59–66 (1995).

    CAS  PubMed  Google Scholar 

  199. Maddaloni, M. et al. Immunological characteristics associated with the protective efficacy of antibodies to ricin. J. Immunol. 172, 6221–6228 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Olson, M. A. et al. Finding a new vaccine in the ricin protein fold. Protein Eng. Des. Sel. 17, 391–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Poli, M. A., Rivera, V. R., Pitt, M. L. & Vogel, P. Aerosolized specific antibody protects mice from lung injury associated with aerosolized ricin exposure. Toxicon 34, 1037–44 (1996).

    Article  CAS  PubMed  Google Scholar 

  202. Smallshaw, J. E. et al. A novel recombinant vaccine which protects mice against ricin intoxication. Vaccine 20, 3422–3427 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. LeClaire, R. D. & Bavari, S. Human antibodies to bacterial superantigens and their ability to inhibit T-cell activation and lethality. Antimicrob. Agents Chemother. 45, 460–463 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. LeClaire, R. D., Hunt, R. E. & Bavari, S. Protection against bacterial superantigen staphylococcal enterotoxin B by passive vaccination. Infect. Immun. 70, 2278–2281 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Burnett, J. C. et al. Conformational sampling of the botulinum neurotoxin serotype a light chain: implications for inhibitor binding. Bioorg. Med. Chem. 13, 333–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Franz, D. R. in Textbook of Military Medicine (ed. Zajtchuk, R.) 603–619 (US Department of the Army, Surgeon General and the Borden Institute, Washington DC, 1997).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. J. Aman, R. Panchal, C. Whitehouse, B. Purcell, B. Stiles, R. Gussio and M. Hepburn for critical comments and substantial help in preparing this review. T. L. Nguyen for generating figure 1. In addition, we sincerely apologise to our esteemed colleagues whose work could not be included in this review due to space limitations. The content of this review does not necessarily reflect the views or policies of the Department of Health and Human Services or US Army, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Bavari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bioterrorism Resources

CDC Emergency Preparedness & Response Site

Centers for Disease Control

Developmental Therapeutics Program NCI/NIH

US Army Medical Research Institute of Infectious Diseases

US Department of State

Glossary

BACILLUS ANTHRACIS

The causative agent of anthrax and a Gram-positive, spore-forming bacillus. This aerobic organism is non-motile, catalase positive and forms large, grey–white to white, non-haemolytic colonies on sheep blood agar plates.

ANTHRAX TOXIN

A complex composed of three proteins: protective antigen (PA), lethal factor (LF) and oedema factor (EF).

SNARE COMPLEX

A complex composed of SNAP25, VAMP (also referred to as synaptobrevin) and syntaxin that is involved in membrane fusion and the exocytosis of acetylcholine into neuromuscular junctions.

RICIN TOXIN

Isolated from seeds of the castor plant (Ricinus communis), ricin toxin consists of a 32-kDa B chain that is linked by a disulphide bridge to a 32-kDa A chain (RTA)175,176. The B chain binds cell surfaces. Once inside the cell cytoplasm, RTA is released, and irreversibly depurinates the 28S rRNA, destroying the elongation-factor-binding site, and thereby disabling cellular protein synthesis177,178,179.

STAPHYLOCOCCAL ENTEROTOXINS

A large group of protein toxins that engage both major histocompatibility complex class II molecules on the surface of antigen-presenting cells and the variable (V) β-chain of a large subset of T-cell receptors.

YERSINIA PESTIS

The causative agent of plague, it is an aerobic, Gram-negative bacillus from the bacterial family Enterobacteriaceae.

FRANCESELLA TULARENSIS

The causative agent of tularaemia, it is a small, aerobic Gram-negative coccobacilli. This agent is the most infectious human pathogen known. In the past, both the former Soviet Union and the US had programmes to develop weapons containing this bacterium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnett, J., Henchal, E., Schmaljohn, A. et al. The evolving field of biodefence: therapeutic developments and diagnostics. Nat Rev Drug Discov 4, 281–296 (2005). https://doi.org/10.1038/nrd1694

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd1694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing