Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis

Abstract

Labelling antigen-specific T cells with peptide–MHC multimers has provided an invaluable way to monitor T cell-mediated immune responses. A number of recent developments in this technology have made these multimers much easier to make and use in large numbers. Furthermore, enrichment techniques have provided a greatly increased sensitivity that allows the analysis of the naive T cell repertoire directly. Thus, we can expect a flood of new information to emerge in the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The advantage of peptide–MHC tetramers and other multimers for the detection of antigen-specific T cells.
Figure 2: UV-mediated peptide-exchange technology.
Figure 3: The combinatorial tetramer staining concept.
Figure 4: Peptide–MHC tetramer enrichment using magnetic particles.

References

  1. Weitkamp, J. H. et al. Generation of recombinant human monoclonal antibodies to rotavirus from single antigen-specific B cells selected with fluorescent virus-like particles. J. Immunol. Methods 275, 223–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Doucett, V. P. et al. Enumeration and characterization of virus-specific B cells by multicolor flow cytometry. J. Immunol. Methods 303, 40–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hayakawa, K., Ishii, R., Yamasaki, K., Kishimoto, T. & Hardy, R. R. Isolation of high-affinity memory B cells: phycoerythrin as a probe for antigen-binding cells. Proc. Natl Acad. Sci. USA 84, 1379–1383 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McHeyzer-Williams, L. J. & McHeyzer-Williams, M. G. Analysis of antigen-specific B-cell memory directly ex vivo. Methods Mol. Biol. 271, 173–188 (2004).

    CAS  PubMed  Google Scholar 

  5. Matsui, K. et al. Low affinity interaction of peptide–MHC complexes with T cell receptors. Science 254, 1788–1791 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Schatz, P. J. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology 11, 1138–1143 (1993).

    CAS  PubMed  Google Scholar 

  7. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Lebowitz, M. S. et al. Soluble, high-affinity dimers of T-cell receptors and class II major histocompatibility complexes: biochemical probes for analysis and modulation of immune responses. Cell. Immunol. 192, 175–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Murali-Krishna, K. et al. In vivo dynamics of anti-viral CD8 T cell responses to different epitopes. An evaluation of bystander activation in primary and secondary responses to viral infection. Adv. Exp. Med. Biol. 452, 123–142 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Savage, P. A. & Davis, M. M. A kinetic window constricts the T cell receptor repertoire in the thymus. Immunity 14, 243–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Choi, E. M. et al. High avidity antigen-specific CTL identified by CD8-independent tetramer staining. J. Immunol. 171, 5116–5123 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, P. P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med. 5, 677–685 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Toebes, M. et al. Design and use of conditional MHC class I ligands. Nature Med. 12, 246–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Day, C. L. et al. Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 112, 831–842 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Reijonen, H. & Kwok, W. W. Use of HLA class II tetramers in tracking antigen-specific T cells and mapping T-cell epitopes. Methods 29, 282–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Newell, E. W., Klein, L. O., Yu, W. & Davis, M. M. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nature Methods 6, 497–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hadrup, S. R. et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nature Methods 6, 520–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Stadinski, B. D. et al. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc. Natl Acad. Sci. USA 107, 10978–10983 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Landais, E. et al. New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation. J. Immunol. 183, 7949–7957 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Grotenbreg, G. M. et al. Discovery of CD8+ T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. Proc. Natl Acad. Sci. USA 105, 3831–3836 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Karadimitris, A. et al. Human CD1d–glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl Acad. Sci. USA 98, 3294–3298 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sidobre, S. & Kronenberg, M. CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 268, 107–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Li, D., Chen, N., McMichael, A. J., Screaton, G. R. & Xu, X. N. Generation and characterisation of CD1d tetramer produced by a lentiviral expression system. J. Immunol. Methods 330, 57–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Crowley, M. P. et al. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287, 314–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, J., Groh, V. & Spies, T. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J. Immunol. 169, 1236–1240 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Subbramanian, R. A. et al. Engineered T-cell receptor tetramers bind MHC-peptide complexes with high affinity. Nature Biotech. 22, 1429–1434 (2004).

    Article  CAS  Google Scholar 

  29. Crawford, F. et al. Use of baculovirus MHC/peptide display libraries to characterize T-cell receptor ligands. Immunol. Rev. 210, 156–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Tessmer, M. S. et al. KLRG1 binds cadherins and preferentially associates with SHIP-1. Int. Immunol. 19, 391–400 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  32. Kriegeskorte, A. K. et al. NKG2D-independent suppression of T cell proliferation by H60 and MICA. Proc. Natl Acad. Sci. USA 102, 11805–11810 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ravkov, E. V., Myrick, C. M. & Altman, J. D. Immediate early effector functions of virus-specific CD8+CCR7+ memory cells in humans defined by HLA and CC chemokine ligand 19 tetramers. J. Immunol. 170, 2461–2468 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Mallet-Designe, V. I. et al. Detection of low-avidity CD4+ T cells using recombinant artificial APC: following the antiovalbumin immune response. J. Immunol. 170, 123–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Chattopadhyay, P. K. et al. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nature Med. 12, 972–977 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Scholler, J. et al. A recombinant human HLA-class I antigen linked to dextran elicits innate and adaptive immune responses. J. Immunol. Methods 360, 1–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, D. S. et al. Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray. PLoS Med. 2, e265 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kwong, G. A. et al. Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells. J. Am. Chem. Soc. 131, 9695–9703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramachandiran, V. et al. A robust method for production of MHC tetramers with small molecule fluorophores. J. Immunol. Methods 319, 13–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Jenkins, M. K., Chu, H. H., McLachlan, J. B. & Moon, J. J. On the composition of the preimmune repertoire of T cells specific for peptide–major histocompatibility complex ligands. Annu. Rev. Immunol. 28, 275–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Ornatsky, O., Baranov, V. I., Bandura, D. R., Tanner, S. D. & Dick, J. Multiple cellular antigen detection by ICP-MS. J. Immunol. Methods 308, 68–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Skinner, P. J. & Haase, A. T. In situ tetramer staining. J. Immunol. Methods 268, 29–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Skinner, P. J. & Haase, A. T. In situ staining using MHC class I tetramers. Curr. Protoc. Immunol. 64, 17.4 (2005).

    Google Scholar 

  46. Haanen, J. B. et al. In situ detection of virus- and tumor-specific T-cell immunity. Nature Med. 6, 1056–1060 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Khanna, K. M., McNamara, J. T. & Lefrancois, L. In situ imaging of the endogenous CD8 T cell response to infection. Science 318, 116–120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Q. et al. Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science 323, 1726–1729 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McGavern, D. B., Christen, U. & Oldstone, M. B. Molecular anatomy of antigen-specific CD8+ T cell engagement and synapse formation in vivo. Nature Immunol. 3, 918–925 (2002).

    Article  CAS  Google Scholar 

  50. Moore, A., Grimm, J., Han, B. & Santamaria, P. Tracking the recruitment of diabetogenic CD8+ T-cells to the pancreas in real time. Diabetes 53, 1459–1466 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Delong, J. H. et al. Ara h 1-reactive T cells in individuals with peanut allergy. J. Allergy Clin. Immunol. 127, 1211–1218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kinnunen, T. et al. Allergen-specific naive and memory CD4+ T cells exhibit functional and phenotypic differences between individuals with or without allergy. Eur. J. Immunol. 40, 2460–2469 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Gredmark-Russ, S., Cheung, E. J., Isaacson, M. K., Ploegh, H. L. & Grotenbreg, G. M. The CD8 T-cell response against murine gammaherpesvirus 68 is directed toward a broad repertoire of epitopes from both early and late antigens. J. Virol. 82, 12205–12212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Obar, J. J., Khanna, K. M. & Lefrancois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28, 859–869 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kotturi, M. F. et al. Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. J. Immunol. 181, 2124–2133 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Alanio, C., Lemaitre, F., Law, H. K., Hasan, M. & Albert, M. L. Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood 115, 3718–3725 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Kwok, W. W. et al. Direct ex vivo analysis of allergen-specific CD4+ T cells. J. Allergy Clin. Immunol. 125, 1407–1409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmidt, J. et al. Immunodominance of HLA-A2-restricted hepatitis C virus-specific CD8+ T cell responses is linked to naive-precursor frequency. J. Virol. 85, 5232–5236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rizzuto, G. A. et al. Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response. J. Exp. Med. 206, 849–866 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cobbold, M. et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA–peptide tetramers. J. Exp. Med. 202, 379–386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Knabel, M. et al. Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nature Med. 8, 631–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Maile, R. et al. Antigen-specific modulation of an immune response by in vivo administration of soluble MHC class I tetramers. J. Immunol. 167, 3708–3714 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Yuan, R. R. et al. Targeted deletion of T-cell clones using alpha-emitting suicide MHC tetramers. Blood 104, 2397–2402 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Kappel, B. J. et al. Remodeling specific immunity by use of MHC tetramers: demonstration in a graft-versus-host disease model. Blood 107, 2045–2051 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Penaloza-MacMaster, P., Masopust, D. & Ahmed, R. T-cell reconstitution without T-cell immunopathology in two models of T-cell-mediated tissue destruction. Immunology 128, 164–171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hess, P. R. et al. Selective deletion of antigen-specific CD8+ T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin. Blood 109, 3300–3307 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vincent, B. G. et al. Toxin-coupled MHC class I tetramers can specifically ablate autoreactive CD8+ T cells and delay diabetes in nonobese diabetic mice. J. Immunol. 184, 4196–4204 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Harmon, M. W., Rota, P. A., Walls, H. H. & Kendal, A. P. Antibody response in humans to influenza virus type B host-cell-derived variants after vaccination with standard (egg-derived) vaccine or natural infection. J. Clin. Microbiol. 26, 333–337 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Appay, V., Douek, D. C. & Price, D. A. CD8+ T cell efficacy in vaccination and disease. Nature Med. 14, 623–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. He, X. S. et al. Phenotypic changes in influenza-specific CD8+ T cells after immunization of children and adults with influenza vaccines. J. Infect. Dis. 197, 803–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Co, M. D., Kilpatrick, E. D. & Rothman, A. L. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization. Immunology 128, e718–e727 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wei, H. et al. DR*W201/P65 tetramer visualization of epitope-specific CD4 T-cell during M. tuberculosis infection and its resting memory pool after BCG vaccination. PLoS ONE 4, e6905 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Betts, M. R. et al. Characterization of functional and phenotypic changes in anti-Gag vaccine-induced T cell responses and their role in protection after HIV-1 infection. Proc. Natl Acad. Sci. USA 102, 4512–4517 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pittet, M. J. et al. Ex vivo analysis of tumor antigen specific CD8+ T cell responses using MHC/peptide tetramers in cancer patients. Int. Immunopharmacol. 1, 1235–1247 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Rolland, M. et al. Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PLoS ONE 3, e1424 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Molldrem, J. J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nature Med. 6, 1018–1023 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Callahan, M. K., Wolchok, J. D. & Allison, J. P. Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin. Oncol. 37, 473–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Molldrem, J. J. Vaccination for leukemia. Biol. Blood Marrow Transplant. 12, 13–18 (2006).

    Article  PubMed  Google Scholar 

  79. Rosenberg, S. A. & Dudley, M. E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Britten, C. M. et al. Harmonization guidelines for HLA–peptide multimer assays derived from results of a large scale international proficiency panel of the Cancer Vaccine Consortium. Cancer Immunol. Immunother. 58, 1701–1713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Janetzki, S. et al. “MIATA”-minimal information about T cell assays. Immunity 31, 527–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, J. et al. Multiplex mapping of CD4 T cell epitopes using class II tetramers. Clin. Immunol. 120, 21–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Warren, L., Bryder, D., Weissman, I. L. & Quake, S. R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl Acad. Sci. USA 103, 17807–17812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rodenko, B. et al. Generation of peptide–MHC class I complexes through UV-mediated ligand exchange. Nature Protoc. 1, 1120–1132 (2006).

    Article  CAS  Google Scholar 

  85. Garboczi, D. N., Hung., D. T. & Wiley, D. C. HLA-A2–peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl Acad. Sci. USA 89, 3429–3433 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Altman, J. D., Reay, P. A. & Davis, M. M. Formation of functional peptide complexes of class II major histocompatibility complex proteins from subunits produced in Escherichia coli. Proc. Natl Acad. Sci. USA 90, 10330–10334 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cameron, T. O. et al. Labeling antigen-specific CD4+ T cells with class II MHC oligomers. J. Immunol. Methods 268, 51–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Scott, C. A., Garcia, K. C., Carbone, F. R., Wilson, I. A. & Teyton, L. Role of chain pairing for the production of functional soluble IA major histocompatibility complex class II molecules. J. Exp. Med. 183, 2087–2095 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Novak, E. J., Liu, A. W., Nepom, G. T. & Kwok, W. W. MHC class II tetramers identify peptide-specific human CD4+ T cells proliferating in response to influenza A antigen. J. Clin. Invest. 104, R63–R67 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Belz, G. T., Altman, J. D. & Doherty, P. C. Characteristics of virus-specific CD8+ T cells in the liver during the control and resolution phases of influenza pneumonia. Proc. Natl Acad. Sci. USA 95, 13812–13817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gütgemann, I. et al. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 8, 667–673 (1998).

    Article  PubMed  Google Scholar 

  94. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank our sources of funding for this work. M.M.D. is supported by the Howard Hughes Medical Institute, the Bill and Melinda Gates Foundation (51731) and grants from the US National Institutes of Health (NIH; U19AI057229). J.D.A. is supported by NIH grants to the NIH Tetramer Core Facility (N01A125456M0D13) and the Emory Center for AIDS research (P30 AI050409). E.W.N. is supported by a Steven and Edward Bielfelt Postdoctoral Fellowship from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark M. Davis or John D. Altman.

Ethics declarations

Competing interests

Mark M. Davis and John D. Altman hold a patent for use of peptide–MHC tetramers and receive royalties for their commercial use.

Related links

Related links

FURTHER INFORMATION

Mark M. Davis's homepage

Immune Epitope Database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, M., Altman, J. & Newell, E. Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis. Nat Rev Immunol 11, 551–558 (2011). https://doi.org/10.1038/nri3020

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nri3020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing