Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The error-prone DNA polymerase ι provides quantitative resistance to lung tumorigenesis and mutagenesis in mice

Abstract

Opposite undamaged nucleotide T, DNA polymerase ι (Polι) preferentially incorporates G rather than A, violating the Watson–Crick rule. Although the actual biological role of Polι remains enigmatic, we have identified its coding gene as a candidate for pulmonary adenoma resistance 2 (Par2), a mouse quantitative trait locus modulating chemically induced lung tumor susceptibility. Notably, the most tumor-sensitive Par2 allele possessed by the 129X1/SvJ mouse is associated with a loss-of-function mutation in Polι. To determine whether the nonfunctional Polι is responsible for the 129X1/SvJ-specific Par2 phenotype, we knocked out Polι in a C57BL/6J mouse carrying a less tumor-sensitive Par2 allele. Disruption of the C57BL/6J Polι conferred 129X1/SvJ-like sensitivity on the C57BL/6J Par2 locus and increased the in vivo mutation frequency in the lung, providing definitive proof that Polι causes the Par2 effect and inhibits tumorigenesis and mutagenesis, despite its extreme replication infidelity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Malkinson AM . Primary lung tumors in mice as an aid for understanding, preventing, and treating human adenocarcinoma of the lung. Lung Cancer 2001; 32: 265–279.

    Article  CAS  Google Scholar 

  2. Reif AE, Heeren T . Consensus on synergism between cigarette smoke and other environmental carcinogens in the causation of lung cancer. Adv Cancer Res 1999; 76: 161–186.

    Article  CAS  Google Scholar 

  3. Obata M, Nishimori H, Ogawa K, Lee G-H . Identification of the Par2 (pulmonary adenoma resistance) locus on mouse chromosome 18, a major genetic determinant for lung carcinogen resistance in BALB/cByJ mice. Oncogene 1996; 13: 1599–1604.

    CAS  PubMed  Google Scholar 

  4. Lee G-H, Nishimori H, Sasaki Y, Matsushita H, Kitagawa T, Tokino T . Analysis of lung tumorigenesis in chimeric mice indicates the pulmonary adenoma resistance 2 (Par2) locus to operate in the tumor-initiation stage in a cell-autonomous manner: detection of polymorphisms in the Polι gene as a candidate for Par2. Oncogene 2003; 22: 2374–2382.

    Article  CAS  Google Scholar 

  5. Lee G-H, Matsushita H . Genetic linkage between Polι deficiency and increased susceptibility to lung tumors in mice. Cancer Sci 2005; 96: 256–259.

    Article  CAS  Google Scholar 

  6. Karasaki H, Obata M, Ogawa K, Lee G-H . Roles of the Pas1 and Par2 genes in determination of the unique, intermediate susceptibility of BALB/cByJ mice to urethane-induction of lung carcinogenesis: differential effects on tumor multiplicity, size and Kras2 mutations. Oncogene 1997; 15: 1833–1840.

    Article  CAS  Google Scholar 

  7. Lee G-H, Matsushita H, Kitagawa T . Fine chromosomal localization of the mouse Par2 gene that confers resistance against urethane-induction of pulmonary adenomas. Oncogene 2001; 20: 3979–3985.

    Article  CAS  Google Scholar 

  8. Wang M, Devereux TR, Vikis HG, McCulloch SD, Holliday W, Anna C et al. Pol ι is a candidate for the mouse pulmonary adenoma resistance 2 locus, a major modifier of chemically induced lung neoplasia. Cancer Res 2004; 64: 1924–1931.

    Article  CAS  Google Scholar 

  9. Vaisman A, Frank EG, McDonald JP, Tissier A, Woodgate R . Polι-dependent lesion bypass in vitro. Mutat Res 2002; 29: 9–22.

    Article  Google Scholar 

  10. Vidal AE, Woodgate R . Insights into the cellular role of enigmatic DNA polymerase ι. DNA Repair (Amst) 2009; 8: 420–423.

    Article  CAS  Google Scholar 

  11. McDonald JP, Frank EG, Plosky BS, Rogozin IB, Masutani C, Hanaoka F et al. 129-Derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J Exp Med 2003; 198: 635–643.

    Article  CAS  Google Scholar 

  12. Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 1999; 399: 700–704.

    Article  CAS  Google Scholar 

  13. Ohkumo T, Kondo Y, Yokoi M, Tsukamoto T, Yamada A, Sugimoto T et al. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase η and mesenchymal tumors in mice deficient for DNA polymerase ι. Mol Cell Biol 2006; 26: 7696–7706.

    Article  CAS  Google Scholar 

  14. Dumstorf CA, Clark AB, Lin Q, Kissling GE, Yuan T, Kucherlapati R et al. Participation of mouse DNA polymerase ι in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer. Proc Natl Acad Sci USA 2006; 103: 18083–18088.

    Article  CAS  Google Scholar 

  15. Liu PY, Vikis H, James M, Lu Y, Wang DL, Liu HB et al. Identification of Las2, a major modifier gene affecting the Pas1 mouse lung tumor susceptibility locus. Cancer Res 2009; 69: 6290–6298.

    Article  CAS  Google Scholar 

  16. Manenti G, Galvan A, Pettinicchio A, Trincucci G, Spada E, Zolin A et al. Mouse genome-wide association mapping needs linkage analysis to avoid false-positive loci. PLoS Genet 2009; 5: e1000331.

    Article  Google Scholar 

  17. McDonald JP, Rapić-Otrin V, Epstein JA, Broughton BC, Wang X, Lehmann AR et al. Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase η. Genomics 1999; 60: 20–30.

    Article  CAS  Google Scholar 

  18. Kannouche P, Fernández de Henestrosa AR, Coull B, Vidal AE, Gray C, Zicha D et al. Localization of DNA polymerases η and ι to the replication machinery is tightly co-ordinated in human cells. EMBO J 2003; 22: 1223–1233.

    Article  CAS  Google Scholar 

  19. Frank EG, Tissier A, McDonald JP, Rapić-Otrin V, Zeng X, Gearhart PJ et al. Altered nucleotide misinsertion fidelity associated with polι-dependent replication at the end of a DNA template. EMBO J 2001; 20: 2914–2922.

    Article  CAS  Google Scholar 

  20. Gariboldi M, Manenti G, Canzian F, Falvella FS, Radice MT, Pierotti MA et al. A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6. Nat Genet 1993; 3: 132–136.

    Article  CAS  Google Scholar 

  21. Manenti G, Galbiati F, Giannì-Barrera R, Pettinicchio A, Acevedo A, Dragani TA . Haplotype sharing suggests that a genomic segment containing six genes accounts for the pulmonary adenoma susceptibility 1 (Pas1) locus activity in mice. Oncogene 2004; 23: 4495–4504.

    Article  CAS  Google Scholar 

  22. Liu P, Wang Y, Vikis H, Maciag A, Wang D, Lu Y et al. Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat Genet 2006; 38: 888–895.

    Article  CAS  Google Scholar 

  23. Festing MF, Yang A, Malkinson AM . At least four genes and sex are associated with susceptibility to urethane-induced pulmonary adenomas in mice. Genet Res 1994; 64: 99–106.

    Article  CAS  Google Scholar 

  24. Devereux TR, Wiseman RW, Kaplan N, Garren S, Foley JF, White CM et al. Assignment of a locus for mouse lung tumor susceptibility to proximal chromosome 19. Mamm Genome 1994; 5: 749–755.

    Article  CAS  Google Scholar 

  25. Malkinson AM, Nesbitt MN, Skamene E . Susceptibility to urethane-induced pulmonary adenomas between A/J and C57BL/6J mice: use of AXB and BXA recombinant inbred lines indicating a three-locus genetic model. J Natl Cancer Inst 1985; 75: 971–974.

    Article  CAS  Google Scholar 

  26. Nohmi T, Katoh M, Suzuki H, Matsui M, Yamada M, Watanabe M et al. A new transgenic mouse mutagenesis test system using Spi- and 6-thioguanine selections. Environ Mol Mutagen 1996; 28: 465–470.

    Article  CAS  Google Scholar 

  27. Dragani TA, Manenti G, Pierotti MA . Genetics of murine lung tumors. Adv Cancer Res 1995; 67: 83–112.

    Article  CAS  Google Scholar 

  28. Dwyer-Nield LD, McQuillan J, Hill-Baskin A, Radcliffe1 RA, You M, Nadeau JH et al. Epistatic interactions govern chemically-induced lung tumor susceptibility and Kras mutation site in murine C57BL/6JChrA/J chromosome substitution strains. Int J Cancer 2010; 126: 125–132.

    Article  CAS  Google Scholar 

  29. Faili A, Aoufouchi S, Flatter E, Guéranger Q, Reynaud CA, Weill JC . Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature 2002; 31: 944–947.

    Article  Google Scholar 

  30. Yang J, Chen Z, Liu Y, Hickey RJ, Malkas LH . Altered DNA polymerase ι expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res 2004; 64: 5597–5607.

    Article  CAS  Google Scholar 

  31. Albertella MR, Lau A, O’Connor MJ . The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst) 2005; 4: 583–593.

    Article  CAS  Google Scholar 

  32. Wang H, Wu W, Wang HW, Wang S, Chen Y, Zhang X et al. Analysis of specialized DNA polymerases expression in human gliomas: association with prognostic significance. Neuro Oncol 2010; 12: 679–686.

    Article  CAS  Google Scholar 

  33. Zhou J, Zhang S, Xie L, Liu P, Xie F, Wu J et al. Overexpression of DNA polymerase iota (Polι) in esophageal squamous cell carcinoma. Cancer Sci 2012; 103: 1574–1579.

    Article  CAS  Google Scholar 

  34. Petta TB, Nakajima S, Zlatanou A, Despras E, Couve-Privat S, Ishchenko A et al. Human DNA polymerase ι protects cells against oxidative stress. EMBO J 2008; 27: 2883–2895.

    Article  CAS  Google Scholar 

  35. Gueranger Q, Stary A, Aoufouchi S, Faili A, Sarasin A, Reynaud CA et al. Role of DNA polymerases η, ι and ζ in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair (Amst) 2008; 7: 1551–1562.

    Article  CAS  Google Scholar 

  36. Kirouac KN, Ling H . Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase ι. Proc Natl Acad Sci USA 2011; 22: 3210–3215.

    Article  Google Scholar 

  37. Yuan B, You C, Andersen N, Jiang Y, Moriya M, O’Connor TR et al. The roles of DNA polymerases κ and ι in the error-free bypass of N2-carboxyalkyl-2'-deoxyguanosine lesions in mammalian cells. J Biol Chem 2011; 20: 17503–17511.

    Article  Google Scholar 

  38. Sakiyama T, Kohno T, Mimaki S, Ohta T, Yanagitani N, Sobue T et al. Association of amino acid substitution polymorphisms in DNA repair genes TP53, POLI, REV1 and LIG4 with lung cancer risk. Int J Cancer 2005; 114: 730–737.

    Article  CAS  Google Scholar 

  39. Yokota J, Shiraishi K, Kohno T . Genetic basis for susceptibility to lung cancer: recent progress and future directions. Adv Cancer Res 2010; 109: 51–72.

    Article  CAS  Google Scholar 

  40. Wang WY, Barratt BJ, Clayton DG, Todd JA . Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005; 6: 109–118.

    Article  CAS  Google Scholar 

  41. Hayashi Y, Osanai M, Lee G-H . Fascin-1 expression correlates with repression of E-cadherin expression in hepatocellular carcinoma cells and augments their invasiveness in combination with matrix metalloproteinases. Cancer Sci 2011; 102: 1228–1235.

    Article  CAS  Google Scholar 

  42. Wong ML, Medrano JF . Real-time PCR for mRNA quantitation. Biotechniques 2005; 39: 75–85.

    Article  CAS  Google Scholar 

  43. Skovlunda E, Fenstadb GU . Should we always choose a nonparametric test when comparing two apparently nonnormal distributions? J Clin Epidemiol 2001; 54: 86–92.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Yukari Totsuka and Dr Hitoshi Nakagama for their helpful advice on the gpt delta mouse assay. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology, and the Smoking Research Foundation of Japan.

Author information

Authors and Affiliations

Corresponding author

Correspondence to G-H Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iguchi, M., Osanai, M., Hayashi, Y. et al. The error-prone DNA polymerase ι provides quantitative resistance to lung tumorigenesis and mutagenesis in mice. Oncogene 33, 3612–3617 (2014). https://doi.org/10.1038/onc.2013.331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2013.331

Keywords

Search

Quick links