Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells

Abstract

CYLD is a deubiquitinating (DUB) enzyme that has a pivotal role in modulating nuclear factor kappa B (NF-κB) signaling pathways by removing the lysine 63- and linear-linked ubiquitin chain from substrates such as tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. Loss of CYLD activity is associated with tumorigenicity, and levels of CYLD are lost or downregulated in different types of human tumors. In the present study, we found that high CYLD expression was associated with better overall survival and relapse-free neuroblastoma patient outcome, as well as inversely correlated with the stage of neuroblastoma. Retinoic acid-mediated differentiation of neuroblastoma restored CYLD expression and promoted SUMOylation of CYLD. This posttranslational modification inhibited deubiquitinase activity of CYLD against TRAF2 and TRAF6 and facilitated NF-κB signaling. Overexpression of non-SUMOylatable mutant CYLD in neuroblastoma cells reduced retinoic acid-induced NF-κB activation and differentiation of cells, but instead promoted cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wagner LM, Danks MK . New therapeutic targets for the treatment of high-risk neuroblastoma. J Cell Biochem 2009; 107: 46–57.

    Article  CAS  Google Scholar 

  2. Maris JM . Recent advances in neuroblastoma. N Engl J Med 2010; 362: 2202–2211.

    Article  CAS  Google Scholar 

  3. Brodeur GM . Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3: 203–216.

    Article  CAS  Google Scholar 

  4. Anderson DJ, Axel R . A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids. Cell 1986; 47: 1079–1090.

    Article  CAS  Google Scholar 

  5. Anderson DJ, Carnahan JF, Michelsohn A, Patterson PH . Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci 1991; 11: 3507–3519.

    Article  CAS  Google Scholar 

  6. Fredlund E, Ringner M, Maris JM, Pahlman S . High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc Natl Acad Sci USA 2008; 105: 14094–14099.

    Article  CAS  Google Scholar 

  7. Kogner P, Barbany G, Dominici C, Castello MA, Raschella G, Persson H . Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 1993; 53: 2044–2050.

    CAS  PubMed  Google Scholar 

  8. Maris JM, Hogarty MD, Bagatell R, Cohn SL . Neuroblastoma. Lancet 2007; 369: 2106–2120.

    Article  CAS  Google Scholar 

  9. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N Engl J Med 1999; 341: 1165–1173.

    Article  CAS  Google Scholar 

  10. Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children's Oncology Group Study. J Clin Oncol 2009; 27: 1007–1013.

    Article  CAS  Google Scholar 

  11. Sidell N, Altman A, Haussler MR, Seeger RC . Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp Cell Res 1983; 148: 21–30.

    Article  CAS  Google Scholar 

  12. Pahlman S, Ruusala AI, Abrahamsson L, Mattsson ME, Esscher T . Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 1984; 14: 135–144.

    Article  CAS  Google Scholar 

  13. Ortoft E, Pahlman S, Andersson G, Parrow V, Betsholtz C, Hammerling U . Human GAP-43 gene expression: multiple start sites for initiation of transcription in differentiating human neuroblastoma cells. Mol Cell Neurosci 1993; 4: 549–561.

    Article  CAS  Google Scholar 

  14. Kaplan DR, Matsumoto K, Lucarelli E, Thiele CJ . Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron 1993; 11: 321–331.

    Article  CAS  Google Scholar 

  15. Thiele CJ, Reynolds CP, Israel MA . Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 1985; 313: 404–406.

    Article  CAS  Google Scholar 

  16. Clagett-Dame M, McNeill EM, Muley PD . Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J Neurobiol 2006; 66: 739–756.

    Article  CAS  Google Scholar 

  17. Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet. 2000; 25: 160–165.

    Article  CAS  Google Scholar 

  18. Massoumi R . CYLD: a deubiquitination enzyme with multiple roles in cancer. Fut Oncol 2011; 7: 285–297.

    Article  CAS  Google Scholar 

  19. Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, Ashworth A, et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 2008; 29: 451–464.

    Article  CAS  Google Scholar 

  20. Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D . Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10: 466–473.

    Article  CAS  Google Scholar 

  21. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G . CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 2003; 424: 793–796.

    Article  CAS  Google Scholar 

  22. Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R . Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 2006; 125: 665–677.

    Article  CAS  Google Scholar 

  23. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G . The tumour suppressor CYLD negatively regulates NF-[kappa]B signalling by deubiquitination. Nature 2003; 424: 801–805.

    Article  CAS  Google Scholar 

  24. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003; 424: 797–801.

    Article  CAS  Google Scholar 

  25. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483: 589–593.

    Article  CAS  Google Scholar 

  26. Kohl NE, Gee CE, Alt FW . Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science 1984; 226: 1335–1337.

    Article  CAS  Google Scholar 

  27. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 1985; 313: 1111–1116.

    Article  CAS  Google Scholar 

  28. Westermark UK, Wilhelm M, Frenzel A, Henriksson MA . The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 2011; 21: 256–266.

    Article  CAS  Google Scholar 

  29. Feng Z, Porter AG . NF- κB/Rel proteins are required for neuronal differentiation of SH-SY5Y neuroblastoma cells. J Biol Chem 1999; 274: 30341–30344.

    Article  CAS  Google Scholar 

  30. Kiningham KK, Cardozo Z-A, Cook C, Cole MP, Stewart JC, Tassone M, et al. All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-κB. Free Radic Biol Med 2008; 44: 1610–1616.

    Article  CAS  Google Scholar 

  31. Bryan B, Kumar V, Stafford LJ, Cai Y, Wu G, GEFT Liu M, et al. Family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J Biol Chem 2004; 279 45824–45832.

    Article  CAS  Google Scholar 

  32. Liu T-X, Zhang J-W, Tao J, Zhang R-B, Zhang Q-H, Zhao C-J, et al. Gene expression networks underlying retinoic acid–induced differentiation of acute promyelocytic leukemia cells. Blood 2000; 96: 1496–1504.

    CAS  PubMed  Google Scholar 

  33. Deyrieux AF, Rosas-Acosta G, Ozbun MA, Wilson VG . Sumoylation dynamics during keratinocyte differentiation. J Cell Sci 2007; 120: 125–136.

    Article  CAS  Google Scholar 

  34. Cheung NK, Dyer MA . Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nature Rev Cancer 2013; 13: 397–411.

    Article  CAS  Google Scholar 

  35. Bauters TG, Laureys G, Van de Velde V, Benoit Y, Robays H . Practical implications for the administration of 13-cis retinoic acid in pediatric oncology. Int J Clin Pharm 2011; 33: 597–598.

    Article  CAS  Google Scholar 

  36. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351–361.

    Article  CAS  Google Scholar 

  37. Chen J, Chen ZJ . Regulation of NF-κB by ubiquitination. Curr Opin Immunol 2013; 25: 4–12.

    Article  CAS  Google Scholar 

  38. Lovat PE, Irving H, Annicchiarico-Petruzzelli M, Bernassola F, Malcolm AJ, Pearson AD, et al. Apoptosis of N-type neuroblastoma cells after differentiation with 9-cis-retinoic acid and subsequent washout. J Natl Cancer Inst 1997; 89: 446–452.

    Article  CAS  Google Scholar 

  39. Celay J, Blanco I, Lazcoz P, Rotinen M, Castresana JS, Encio I . Changes in gene expression profiling of apoptotic genes in neuroblastoma cell lines upon retinoic acid treatment. PLoS ONE 2013; 8: e62771.

    Article  CAS  Google Scholar 

  40. O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 2011; 13: 1437–1442.

    Article  CAS  Google Scholar 

  41. Wright A, Reiley WW, Chang M, Jin W, Lee AJ, Zhang M, et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell 2007; 13: 705–716.

    Article  CAS  Google Scholar 

  42. Lee Moon H, Mabb Angela M, Gill Grace B, Yeh Edward TH, Miyamoto S . NF-κB Induction of the SUMO protease SENP2: a negative feedback loop to attenuate cell survival response to genotoxic stress. Mol Cell 2011; 43: 180–191.

    Article  Google Scholar 

  43. Wilkinson KA, Nakamura Y, Henley JM . Targets and consequences of protein SUMOylation in neurons. Brain Res Rev 2010; 64: 195–212.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The plasmid for mammalian expression of His-SUMO1, His-SUMO2 and MYC-SUMO1 plasmids were a kind gift from Dr Frauke Melchior (ZMBH, Heidelberg, Germany). Flag-TRAF2 and Flag-TRAF6 plasmids were a kind gift from Dr René Bernards (The Netherlands Cancer Institute, Amsterdam, The Netherlands). We thank Dr Ingrid Ora for her critical reading of this manuscript. This work was supported by the Swedish Cancer Foundation, the Swedish Medical Research Council, the Royal Physiographic Society in Lund, the Gunnar Nilsson Foundations, the Gyllenstiernska Krapperupps Foundations, the BioCARE and by funding from the European Research Council (ERC), under the European Union’s Seventh Framework Programme for Research and Technology Development (grant agreement no. 260460, awarded to RM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Massoumi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Masoumi, K. & Massoumi, R. Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 34, 2251–2260 (2015). https://doi.org/10.1038/onc.2014.159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2014.159

This article is cited by

Search

Quick links