Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface

Subjects

Abstract

Many cancers are dependent on inappropriate activation of epidermal growth factor receptor (EGFR), and drugs targeting this receptor can improve patient survival, although benefits are generally short-lived. We reveal a novel mechanism linking EGFR and the membrane-spanning, cancer-promoting protein CDCP1 (CUB domain-containing protein 1). Under basal conditions, cell surface CDCP1 constitutively internalizes and undergoes palmitoylation-dependent degradation by a mechanism in which it is palmitoylated in at least one of its four cytoplasmic cysteines. This mechanism is functional in vivo as CDCP1 is elevated and palmitoylated in high-grade serous ovarian tumors. Interestingly, activation of the EGFR system with EGF inhibits proteasome-mediated, palmitoylation-dependent degradation of CDCP1, promoting recycling of CDCP1 to the cell surface where it is available to mediate its procancer effects. We also show that mechanisms inducing relocalization of CDCP1 to the cell surface, including disruption of its palmitoylation and EGF treatment, promote cell migration. Our data provide the first evidence that the EGFR system can function to increase the lifespan of a protein and also promote its recycling to the cell surface. This information may be useful for understanding mechanisms of resistance to EGFR therapies and assist in the design of treatments for EGFR-dependent cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ciardiello F, Tortora G . EGFR antagonists in cancer treatment. New Engl J Med 2008; 358: 1160–1174.

    Article  CAS  Google Scholar 

  2. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG . Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13: 714–726.

    Article  CAS  Google Scholar 

  3. Wheeler DL, Dunn EF, Harari PM . Understanding resistance to EGFR inhibitors—impact on future treatment strategies. Nat Rev Clin Oncol 2010; 7: 493–507.

    Article  CAS  Google Scholar 

  4. He Y, Wortmann A, Burke LJ, Reid JC, Adams MN, Abdul-Jabbar I et al. Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCδ. J Biol Chem 2010; 285: 26162–26173.

    Article  CAS  Google Scholar 

  5. Uekita T, Sakai R . Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis. Cancer Sci 2011; 102: 1943–1948.

    Article  CAS  Google Scholar 

  6. Wortmann A, He Y, Deryugina EI, Quigley JP, Hooper JD . The cell surface glycoprotein CDCP1 in cancer—insights, opportunities, and challenges. IUBMB Life 2009; 61: 723–730.

    Article  CAS  Google Scholar 

  7. Hooper JD, Zijlstra A, Aimes RT, Liang H, Claassen GF, Tarin D et al. Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen. Oncogene 2003; 22: 1783–1794.

    Article  CAS  Google Scholar 

  8. Awakura Y, Nakamura E, Takahashi T, Kotani H, Mikami Y, Kadowaki T et al. Microarray-based identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma. J Cancer Res Clin Oncol 2008; 134: 1363–1369.

    Article  CAS  Google Scholar 

  9. Emerling BM, Benes CH, Poulogiannis G, Bell EL, Courtney K, Liu H et al. Identification of CDCP1 as a hypoxia-inducible factor 2alpha (HIF-2alpha) target gene that is associated with survival in clear cell renal cell carcinoma patients. Proc Natl Acad Sci USA 2013; 110: 3483–3488.

    Article  CAS  Google Scholar 

  10. Razorenova OV, Finger EC, Colavitti R, Chernikova SB, Boiko AD, Chan CK et al. VHL loss in renal cell carcinoma leads to up-regulation of CUB domain-containing protein 1 to stimulate PKCδ-driven migration. Proc Natl Acad Sci USA 2011; 108: 1931–1936.

    Article  CAS  Google Scholar 

  11. Miyazawa Y, Uekita T, Hiraoka N, Fujii S, Kosuge T, Kanai Y et al. CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res 2010; 70: 5136–5146.

    Article  CAS  Google Scholar 

  12. Ikeda J, Oda T, Inoue M, Uekita T, Sakai R, Okumura M et al. Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung. Cancer Sci 2009; 100: 429–433.

    Article  CAS  Google Scholar 

  13. Gao W, Chen L, Ma Z, Du Z, Zhao Z, Hu Z et al. Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology 2013; 145: 636–646, e5.

    Article  CAS  Google Scholar 

  14. Uekita T, Jia L, Narisawa-Saito M, Yokota J, Kiyono T, Sakai R . CUB domain-containing protein 1 is a novel regulator of anoikis resistance in lung adenocarcinoma. Mol Cell Biol 2007; 27: 7649–7660.

    Article  CAS  Google Scholar 

  15. Liu H, Ong SE, Badu-Nkansah K, Schindler J, White FM, Hynes RO . CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci USA 2011; 108: 1379–1384.

    Article  CAS  Google Scholar 

  16. Uekita T, Tanaka M, Takigahira M, Miyazawa Y, Nakanishi Y, Kanai Y et al. CUB-domain-containing protein 1 regulates peritoneal dissemination of gastric scirrhous carcinoma. Am J Pathol 2008; 172: 1729–1739.

    Article  CAS  Google Scholar 

  17. Deryugina EI, Conn EM, Wortmann A, Partridge JJ, Kupriyanova TA, Ardi VC et al. Functional role of cell surface CUB domain-containing protein 1 in tumor cell dissemination. Mol Cancer Res 2009; 7: 1197–1211.

    Article  CAS  Google Scholar 

  18. Casar B, He Y, Iconomou M, Hooper JD, Quigley JP, Deryugina EI . Blocking of CDCP1 cleavage in vivo prevents Akt-dependent survival and inhibits metastatic colonization through PARP1-mediated apoptosis of cancer cells. Oncogene 2012; 31: 3924–3938.

    Article  CAS  Google Scholar 

  19. Casar B, Rimann I, Kato H, Shattil SJ, Quigley JP, Deryugina EI . In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated beta1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene 2013; 33: 255–268.

    Article  Google Scholar 

  20. Fukuchi K, Steiniger SC, Deryugina E, Liu Y, Lowery CA, Gloeckner C et al. Inhibition of tumor metastasis: functional immune modulation of the CUB domain containing protein 1. Mol Pharm 2010; 7: 245–253.

    Article  CAS  Google Scholar 

  21. Kollmorgen G, Niederfellner G, Lifke A, Spohn GJ, Rieder N, Vega Harring S et al. Antibody mediated CDCP1 degradation as mode of action for cancer targeted therapy. Mol Oncol 2013; 7: 1142–1151.

    Article  CAS  Google Scholar 

  22. Siva AC, Wild MA, Kirkland RE, Nolan MJ, Lin B, Maruyama T et al. Targeting CUB domain-containing protein 1 with a monoclonal antibody inhibits metastasis in a prostate cancer model. Cancer Res 2008; 68: 3759–3766.

    Article  CAS  Google Scholar 

  23. Dong Y, He Y, de Boer L, Stack MS, Lumley JW, Clements JA et al. The cell surface glycoprotein CUB domain-containing protein 1 (CDCP1) contributes to epidermal growth factor receptor-mediated cell migration. J Biol Chem 2012; 287: 9792–9803.

    Article  CAS  Google Scholar 

  24. Yarden Y, Sliwkowski MX . Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127–137.

    Article  CAS  Google Scholar 

  25. Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 2012; 72: 66–75.

    Article  CAS  Google Scholar 

  26. Blaskovic S, Blanc M, van der Goot FG . What does S-palmitoylation do to membrane proteins? FEBS J 2013; 280: 2766–2774.

    Article  CAS  Google Scholar 

  27. Adams MN, Christensen ME, He Y, Waterhouse NJ, Hooper JD . The role of palmitoylation in signalling, cellular trafficking and plasma membrane localization of protease-activated receptor-2. PLoS One 2011; 6: e28018.

    Article  CAS  Google Scholar 

  28. Adams MN, Pagel CN, Mackie EJ, Hooper JD . Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn Schmiedebergs Arch Pharmacol 2012; 385: 861–873.

    Article  CAS  Google Scholar 

  29. Dietzen DJ, Hastings WR, Lublin DM . Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 1995; 270: 6838–6842.

    Article  CAS  Google Scholar 

  30. Joffre C, Barrow R, Menard L, Calleja V, Hart IR, Kermorgant S . A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol 2011; 13: 827–837.

    Article  CAS  Google Scholar 

  31. Miyazawa Y, Uekita T, Ito Y, Seiki M, Yamaguchi H, Sakai R . CDCP1 regulates the function of MT1-MMP and invadopodia-mediated invasion of cancer cells. Mol Cancer Res 2013; 11: 628–637.

    Article  CAS  Google Scholar 

  32. Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP . The C2 domain of PKCδ is a phosphotyrosine binding domain. Cell 2005; 121: 271–280.

    Article  CAS  Google Scholar 

  33. Sandilands E, Frame MC . Endosomal trafficking of Src tyrosine kinase. Trends Cell Biol 2008; 18: 322–329.

    Article  CAS  Google Scholar 

  34. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13: 239–246.

    Article  CAS  Google Scholar 

  35. Macdonald JL, Pike LJ . A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res 2005; 46: 1061–1067.

    Article  CAS  Google Scholar 

  36. Morris DP, Lei B, Wu YX, Michelotti GA, Schwinn DA . The alpha1a-adrenergic receptor occupies membrane rafts with its G protein effectors but internalizes via clathrin-coated pits. J Biol Chem 2008; 283: 2973–2985.

    Article  CAS  Google Scholar 

  37. Wortmann A, He Y, Christensen ME, Linn M, Lumley JW, Pollock PM et al. Cellular settings mediating Src Substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734. J Biol Chem 2011; 286: 42303–42315.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jon Whitehead for helpful discussions. This work was supported by Cancer Council Queensland Grants 614205 and 1021827 and Wesley Research Institute Grant 2008/06 to JDH. MNA and BSH received Australian Post-Graduate Awards. JDH holds Australian Research Council Future Fellowship FT120100917.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Hooper.

Ethics declarations

Competing interests

JDH is an inventor on a patent describing CDCP1 as an anticancer target. All other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M., Harrington, B., He, Y. et al. EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface. Oncogene 34, 1375–1383 (2015). https://doi.org/10.1038/onc.2014.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2014.88

This article is cited by

Search

Quick links