Abstract
The development of nano- and micropatterned materials is a key component of advanced nanotechnology. We report herein, a photo-based method for patterning general-purpose polymer films. Patterned ultraviolet (UV) light irradiation of a thin polystyrene film under controlled temperature generates surface relief structures by mass transfer from shaded to irradiated areas. The resulting surface relief structure can be arbitrarily erased by heating and reconstructed by patterned UV light irradiation, and this process is repeatable. This new method thus enables fabrication of dynamic reversible patterning structures from various general polymers.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).
Bratton, D., Yang, D., Dai, J. & Ober, C. K. Recent progress in high resolution lithography. Polym. Adv. Technol. 17, 94–103 (2006).
Geissler, M. & Xia, Y. Patterning: principles and some new developments. Adv. Mater. 16, 1249–1269 (2004).
Nie, Z. & Kumacheva, E. Patterning surfaces with functional polymers. Nat. Mater. 7, 277–290 (2008).
Photoreactive Organic Thin Films. (eds. Sekkat, Z. & Knoll, W.) (Academic Press, San Diego, 2002).
Viswanathan, N. K., Kim, D. Y., Bian, S., Williams, J., Liu, W., Li, L., Samuelson, L., Kumar, J. & Tripathy, S. K. Surface relief structures on azo polymer films. J. Mater. Chem. 9, 1941–1955 (1999).
Delaire, J. A. & Nakatani, K. Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 100, 1817–1845 (2000).
Yager, K. G. & Barrett, C. J. All-optical patterning of azo polymer films. Curr. Opin. Solid State Mater. Sci. 5, 487–494 (2001).
Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4175 (2002).
Seki, T. Photoresponsive self-assembly motions in polymer thin films. Curr. Opin. Solid State Mater. Sci. 10, 241–248 (2006).
Fukuda, T., Matsuda, H., Shiraga, T., Kimura, T., Kato, M., Viswanathan, N. K., Kumar, J. & Tripathy, S. K. Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization. Macromolecules 33, 4220–4225 (2000).
Ubukata, T., Isoshima, T. & Hara, M. Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system. Adv. Mater. 17, 1630–1633 (2005).
Harada, K., Itoh, M., Yatagai, T. & Kamemaru, S. Application of surface relief hologram using azobenzene containing polymer film. Opt. Rev. 12, 130–134 (2005).
Ishow, E., Brosseau, A., Clavier, G., Nakatani, K., Pansu, R. B., Vachon, J. -J., Tauc, P., Chauvat, D., Mendonça, C. R. & Piovesan, E. Two-photon fluorescent holographic rewritable micropatterning. J. Am. Chem. Soc. 129, 8970–8971 (2007).
Zettsu, N., Ogasawara, T., Mizoshita, N., Nagano, S. & Seki, T. Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene unit. Adv. Mater. 20, 516–521 (2008).
Goldenberg, L. M., Kulikovsky, L., Kulikovska, O. & Stumpe, J. New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings. J. Mater. Chem. 19, 8068–8071 (2009).
Ubukata, T., Takahashi, K. & Yokoyama, Y. Photoinduced surface relief structures formed on polymer films doped with photochromic spiropyrans. J. Phys. Org. Chem. 20, 981–984 (2007).
Ubukata, T., Yamaguchi, S. & Yokoyama, Y. Photoinduced surface relief structures formed on polymer films mixed with diarylethenes. Chem. Lett. 36, 1224–1225 (2007).
Ubukata, T., Fujii, S. & Yokoyama, Y. Reversible phototriggered micromanufacturing using amorphous photoresponsive spirooxazine film. J. Mater. Chem. 19, 3373–3377 (2009).
Kikuchi, A., Harada, Y., Yagi, M., Ubukata, T., Yokoyama, Y. & Abe, J. Photoinduced diffusive mass transfer in o-Cl-HABI amorphous thin films. Chem. Commun. 46, 2262–2264 (2010).
Tsuboi, Y., Sakashita, S., Hatanaka, K., Fukumura, H. & Masuhara, H. Photothermal ablation of polystyrene film by 248 nm excimer laser irradiation: a mechanistic study by time-resolved measurements. Laser Chem. 16, 167–177 (1996).
Srinivasan, R. & Leigh, W. J. Ablative photodecomposition: action of far-ultraviolet (193 nm) laser radiation on poly(ethylene terephthalate) films. J. Am. Chem. Soc. 104, 6784–6785 (1982).
Kawamura, Y., Toyoda, K. & Namba, S. Effective deep ultraviolet photoetching of polymethyl methacrylate by an eximer laser. Appl. Phys. Lett. 40, 374–375 (1982).
Brannon, J. H., Lankard, J. R., Baise, A. I., Burns, F. & Kaufman, J. Excimer laser etching of polyimide. J. App. Phys. 58, 2036–2043 (1985).
Srinivasan, R., Braren, B. & Dreyfus, R. W. Ultraviolet laser ablation of polyimide films. J. Appl. Phys. 61, 372–376 (1987).
Srinivasan, R., Braren, B. & Casey, K. G. Nature of ‘incubation pulses’ in the ultraviolet laser ablation of polymethyl methacrylate. J. Appl. Phys. 68, 1842–1847 (1990).
Park, J. -H., Yoon, T. -Y., Lee, W. -J. & Lee, S. -D. Multi-domain liquid crystal display with self-aligned 4-domains on surface relief gratings of photopolymer. Mol. Cryst. Liq. Cryst. 375, 433–440 (2002).
Zhou, J., Sun, C., Xiong, B., Wang, J. & Luo, Y. Polymer gratings with low surface relief based on photopolymerization-induced internal diffusion. Appl. Phys. Lett. 84, 3019–3021 (2004).
Ramanujam, P. S. & Berg, R. H. Photodimerization in dipeptides for high capacity optical digital storage. Appl. Phys. Lett. 85, 1665–1667 (2004).
Yamaki, S., Nakagawa, M., Morino, S. & Ichimura, K. Surface relief gratings generated by a photocrosslinkable polymer with styrylpyridine side chains. Appl. Phys. Lett. 76, 2520–2522 (2000).
Ono, H., Emoto, A., Kawatsuki, N. & Hasegawa, T. Self-organized phase gratings in photoreactive polymer liquid crystals. Appl. Phys. Lett. 82, 1359–1361 (2003).
Kawatsuki, N., Hasegawa, T., Ono, H. & Tamoto, T. Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography. Adv. Mater. 15, 991–994 (2003).
Ono, H., Hatayama, A., Emoto, A. & Kawatsuki, N. Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals. Opt. Mater. 30, 248–254 (2007).
Kawatsuki, N., Tashima, A., Manabe, S., Kondo, M., Okada, M., Matsui, S., Emoto, A. & Ono, H. Holographic recording in a photo-cross-linkable liquid crystalline copolymer using a 325-nm laser with various polarizations. React. Funct. Polym. 70, 980–985 (2010).
Kawatsuki, N., Kondo, M., Okada, M., Matsui, S., Ono, H. & Emoto, A. Surface relief formation in photo-cross-linkable polymer/benzophenone composite films using 325 nm laser. Jap. J. Appl. Phys. 49, 08207 (2010).
de Sarkar, M., Gill, N. A., Whitehead, J. A. & Crawford, G. P. Effect of monomer functionality on the morphology and performance of the holographic transmission gratings recorded on polymer dispersed liquid crystals. Macromolecules 36, 630–638 (2003).
Mazzulla, A., Pagliusi, P., Provenzano, C., Russo, G., Carbone, G. & Cipparrone, G. Surface relief gratings on polymer dispersed liquid crystals by polarization holography. Appl. Phys. Lett. 85, 2505–2507 (2004).
Leewis, C. M, de Jong, A. M., van IJzendoorn, L. J. & Broer, D. J. Reaction-diffusion model for the preparation of polymer gratings by patterned ultraviolet illumination. J. Appl. Phys. 95, 4125–4139 (2004).
Leewis, C. M., de Jong, A. M., van IJzendoorn, L. J. & Broer, D. J. Simulations with a dynamic reaction-diffusion model of the polymer grating preparation by patterned ultraviolet illumination. J. Appl. Phys. 95, 8352–8356 (2004).
Sánchez, C., de Gans, B-J., Kozodaev, D., Alexeev, A., Escuti, M. J., van Heesch, C., Bel, T., Schubert, U. S., Bastiaansen, C. W. M. & Broer, D. J. Photoembossing of periodic relief structures using polymerization-induced diffusion: a combinatorial study. Adv. Mater. 17, 2567–2571 (2005).
Hermans, K., Wolf, F. K., Perelaer, J., Janssen, R. A. J., Schubert, U. S., Bastiaansen, C. W. M. & Broer, D. J. High aspect ratio surface relief structures by photoembossing. Appl. Phys. Lett. 91, 174103 (2007).
Goldenberg, L., Sakhno, O. & Stumpe, J. Application of Norland adhesive for holographic recording. Opt. Mater. 27, 1379–1385 (2005).
Aoki, K. & Ichimura, K. Self-developable surface relief photoimaging generated by anionic UV-curing of epoxy resins. Polym. J. 41, 988–992 (2009).
Zhao, D., Xu, Z., Wang, G., Cao, H., Li, W., He, W., Huang, W., Yang, Z. & Yang, H. Formation of surface relief gratings with homeotropically oriented photopolymer from a photocross-linkable organic monomer. Phys. Chem. Chem. Phys. 12, 1436–1439 (2010).
Baldus, O., Leopold, A., Hagen, R., Bieringer, T. & Zilker, S. J. Surface relief gratings generated by pulsed holography: a simple way to polymer nanostructures without isomerizing side-chains. J. Chem. Phys. 114, 1344–1349 (2001).
Ramanujam, P. S. Optical fabrication of nano-structured biopolymer surfaces. Opt. Mater. 27, 1175–1177 (2005).
Krebs, F. C. & Ramanujam, P. S. Holographic recording in a series of conjugated polymers. Opt. Mater. 28, 350–354 (2006).
Kaganovskii, Y., Beke, D. L. & Kökényesi, S. Kinetics of photoinduced surface patterning in chalcogenide thin films. Appl. Phys. Lett. 97, 061906 (2010).
Ubukata, T., Higuchi, T., Zettsu, N., Seki, T. & Hara, M. Spontaneous motion observed in highly sensitive surface relief formation system. Colloids Surf. A 257-258, 123–126 (2005).
Grassie, N. & Weir, N. A. The photooxidation of polymers. I. Experimental methods. J. Appl. Polym. Sci. 9, 963–974 (1965).
Grassie, N. & Weir, N. A. The photooxidation of polymers. II. Photolysis of polystyrene. J. Appl. Polym. Sci. 9, 975–986 (1965).
Grassie, N. & Weir, N. A. The photooxidation of polymers. III. Photooxidation of polystyrene. J. Appl. Polym. Sci. 9, 987–998 (1965).
Grassie, N. & Weir, N. A. The photooxidation of polymers. IV. A note on the coloration of polystyrene. J. Appl. Polym. Sci. 9, 999–1003 (1965).
Geuskens, G., Baeyens-Volant, D., Delaunois, G., Lu-Vinh, Q., Piret, W. & David, C. Photo-oxidation of polymers—I: a quantitative study of the chemical reactions resulting from irradiation of polystyrene at 253.7 nm in the presence of oxygen. Eur. Polym. J. 14, 291–297 (1978).
Geuskens, G., Baeyens-Volant, D., Delaunois, G., Lu-Vinh, Q., Piret, W. & David, C. Photo-oxidation of polymers—II: the sensitized decomposition of hydroperoxides as the main path for initiation of the photo-oxidation of polystyrene irradiated at 253.7 nm. Eur. Polym. J. 14, 299–303 (1978).
David, C., Baeyens-Volant, D., Delaunois, G., Lu-Vinh, Q., Piret, W. & Geuskens, G. Photo-oxidation of polymers—III: molecular weight changes in the photolysis and photo-oxidation of polystyrene. Eur. Polym. J. 14, 501–507 (1978).
Geuskens, G. The photooxidation of polystyrene In Developments in Polymer Degradation (ed. N.) Grassie vol. 3 207–227 (Applied Science, London, 1981).
Barada, D., Itoh, M. & Yatagai, T. Computer simulation of photoinduced mass transport on azobenzene polymer films by particle method. J. Appl. Phys. 96, 4204–4210 (2004).
Barada, D., Fukuda, T., Itoh, M. & Yatagai, T. Proposal of novel model for photoinduced mass transport and numerical analysis by electromagnetic-induced particle transport method. Jap. J. Appl. Phys. 45, 465–469 (2006).
Nakano, H., Tanino, T., Takahashi, T., Ando, H. & Shirota, Y. Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials. J. Mater. Chem. 18, 242–246 (2008).
Millan, M. D., Locklin, J., Fulghum, T., Baba, A. & Advincula, R. C. Polymer thin film photodegradation and photochemical crosslinking: FT-IR imaging, evanescent waveguide spectroscopy, and QCM investigations. Polymer 46, 5556–5568 (2005).
Lucas, P. C. & Porter, R. S. On the fate of the phenyl ring in polystyrene photooxidation. Macromolecules 27, 3666–3668 (1994).
Wells, R. K., Royston, A & Badyal, J. P. S. Direct evidence for the generation of phenyl radicals and crosslinking during the photolysis of a polystyrene film. Macromolecules 27, 7465–7468 (1994).
Kuzina, S. I. & Mikhailov, A. I. Photochain destruction of excited peroxide polystyrene macroradicals. J. Photochem. Photobiol. A 163, 367–372 (2004).
Mailhot, B. & Gardette, J. -L. Polystyrene photooxidation. 1. Identification of the IR-absorbing photoproducts formed at short and long wavelengths. Macromolecules 25, 4119–4126 (1992).
Mailhot, B. & Gardette, J. -L. Polystyrene photooxidation. 2. A pseudo wavelength effect. Macromolecules 25, 4127–4133 (1992).
Lefin, P., Fiorini, C. & Nunzi, J. -M. Anisotropy of the photo-induced translation diffusion of azobenzene dyes in polymer matrices. Pure. Appl. Opt. 7, 71–82 (1998).
Frank, B., Gast, A. P., Russell, T. P., Brown, H. R. & Hawker, C. Polymer mobility in thin films. Macromolecules 29, 6531–6534 (1996).
Karapanagiotis, I. & Gerberich, W. W. Curvature driven flow of thin polymer films and diffusivity measurements. Macromolecules 38, 3420–3425 (2005).
Acknowledgements
We thank Enago (http://www.enago.jp) for the English language review. This work was supported in part by a Grant-in-Aid for Scientific Research (23750153) from the Ministry of Education, Culture, Sports, Science and Technology and the Foundation for the Promotion of Material Science and Technology of Japan (MST Foundation).
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Ubukata, T., Moriya, Y. & Yokoyama, Y. Facile one-step photopatterning of polystyrene films. Polym J 44, 966–972 (2012). https://doi.org/10.1038/pj.2012.40
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.40
Keywords
This article is cited by
-
Photo-triggered large mass transport driven only by a photoresponsive surface skin layer
Scientific Reports (2020)
-
Photoinitiated Marangoni flow morphing in a liquid crystalline polymer film directed by super-inkjet printing patterns
Scientific Reports (2019)
-
PJ ZEON Award for outstanding papers in Polymer Journal 2012
Polymer Journal (2013)


