Abstract
Series of novel poly(arylene benzimidazole)s (PABIs) was obtained by condensation polymerization of aromatic bifluorides with the monomers of di(benzimidazolyl)benzenes (synthesized by reaction of the isomeric phthalic acids with o-phenylenediamine) via a C–N coupling reaction. The structures of this series of polymers were characterized by Fourier transform infrared, proton nuclear magnetic resonance (1H NMR) spectroscopy and elemental analysis, and the results showed good agreement with the proposed structures. These synthesized polymers exhibited relatively high glass-transition temperatures (Tg>240 °C), good thermal stability with high decomposition temperatures (Td>450 °C) and excellent solubility in organic solvents. On the atomic scale, the molecular simulation results indicated that the PABI polymers exhibited a zigzag molecular chain structure with a high free volume fraction due to the different linkage modes of the monomers in the polymerization process. On the macro level, the PABI polymers possessed high tensile strength with good toughness; the mechanical behavior of the PABI polymers indicates that they can be considered a new class of high-performance polymers.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Li, M. -Q., Shaob, Z. -G. & Scott, K. A high conductivity Cs2.5H0.5PMo12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature. J. Power Sources 183, 69–75 (2008).
Chuang, S. -W. & Hsu, S. L. -C. Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. J. Polym. Sci. Part A Polym. Chem. 44, 4508–4513 (2006).
Hosseini, S. S., Teoh, M. M. & Chung, T. S. Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer (Guildf) 49, 1594–1603 (2008).
Yu, D. M., Yoon, K., Yoon, Y. J., Kim, T. -H., Lee, J. Y. & Hong, Y. T. Fabrication and properties of reinforced membranes based on sulfonated poly(arylene ether sulfone) copolymers for proton-exchange membrane fuel cells. Macromol. Chem. Phys. 213, 839–846 (2012).
Lin, C. -Y., Kuo, D. -H., Sie, F. -R., Cheng, J. -Y. & Liou, G. -S. Preparation and characterization of organosoluble polyimide/BaTiO3 composite films with mechanical- and chemical-treated ceramic fillers. Polym. J. 44, 1131–1137 (2012).
Suryani, Chang, C. -M., Liu, Y. -L. & Lee, Y. M. Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J. Mater. Chem. 21, 7480–7486 (2011).
Kumbharkar, S. C. & Kharul, U. K. N-substitution of polybenzimidazoles: synthesis and evaluation of physical properties. Eur. Polym. J. 45, 3363–3371 (2009).
Zhang, L., Ni, Q. -Q., Shiga, A., Fu, Y. & Natsuki, T. Synthesis and mechanical properties of polybenzimidazole nanocomposites reinforced by vapor grown carbon nanofibers. Polym. Comp. 31, 491–496 (2010).
Yu, S., Zhang, H., Xiao, L., Choe, E. -W. & Benicewicz, B. C. Synthesis of poly (2,2'-(1,4-phenylene) 5,5'-bibenzimidazole) (para-PBI) and phosphoric acid doped membrane for fuel cells. Fuel Cell 09, 318–324 (2009).
Sousa, T., Mamlouk, M. & Scott, K. An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Chem. Eng. Sci. 65, 2513–2530 (2010).
Xu, C., Wu, X., Wang, X., Mamlouk, M. & Scott, K. Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells. J. Mater. Chem. 21, 6014–6019 (2011).
Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X. & Scott, K. A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J. Mater. Chem. 21, 11359–11364 (2011).
Kim, S. -K., Kim, T. -H., Jung, J. -W. & Lee, J. -C. Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications. Polymer (Guildf) 50, 3495–3502 (2009).
Bai, Z., Putthanarat, S., Rodrigues, S. J. & Dang, T. D. Properties and performance of composite electrolyte membranes based on sulfonated poly(arylenethioethersulfone) and sulfonated polybenzimidazole. Polymer (Guildf) 52, 3381–3388 (2011).
Hosseini, S. S. & Chung, T. S. Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J. Memb. Sci. 328, 174–185 (2009).
Johnson, F. E. & Cabasso, I. Synthesis and mechanism of PBI phosphonate, poly[2,2′-(-m-phenylene)-5,5′-bibenzimidazole phosphonate ester], and its polyphosphonic acid derivatives. Macromolecules 43, 3634–3651 (2010).
Shen, C. -H., Jheng, L. -c., Hsu, S. L. -c. & J. T. -W., Wang Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells. J. Mater. Chem. 21, 15660–15665 (2011).
Zhao, C., Lin, H., Han, M. & Na, H. Covalently cross-linked proton exchange membranes based on sulfonated poly(arylene ether ketone) and polybenzimidazole oligomer. J. Memb. Sci. 353, 10–16 (2010).
Yamaguchi, I., Osakada, K. & Yamamoto, T. Introduction of a long alkyl side chain to poly(benzimidazole)s. N-alkylation of the imidazole ring and synthesis of novel side chain polyrotaxanes. Macromolecules 30, 4288–4294 (1997).
Klaehn, J. R., Luther, T. A., Orme, C. J., Jones, M. G., Wertsching, A. K. & Peterson, E. S. Soluble N-substituted organosilane polybenzimidazoles. Macromolecules 40, 7487–7492 (2007).
Hua, M. -Y., Chen, H. -C., Tsai, R. -Y., Leu, Y. -L., Liu, Y. -C. & Lai, J. -T. Synthesis and characterization of carboxylated polybenzimidazole and its use as a highly sensitive and selective enzyme-free H2O2 sensor. J. Mater. Chem. 21, 7254–7262 (2011).
Smith, J. G. Jr., Connell, J. W. & Hergenrother, P. M. Synthesis and properties of poly[arylene ether (N-arylenebenzimidazole)]s. J. Polym. Sci. Part A. Polym. Chem. 31, 3099–3108 (1993).
Connell, J. W., Hergenrother, P. M. & Smith, J. G. Jr. Properties of poly (N-arylenebenzimidazoles) and their preparation by aromatic nucleophilic displacement US patent 5410012 (1995).
Connell, John W., Hergenrother, Paul M. & Smith, Joseph G. Jr. Poly (N-arylenebenzimidazoles) via aromatic nucleophilic displacement US patent 5554715 (1996).
Hlil, A. R., Matsumura, S. & Hay, A. S. Polymers containing di(1H-benzo[d]imidazol-2-yl)arene moieties: polymerization via N−C coupling reactions. Macromolecules 41, 1912–1914 (2008).
Qi, Y., Gao, Y., Tian, S., Hlil, A. R., Gaudet, J., Guay, D. & Hay, A. S. Synthesis and properties of novel benzimidazole-containing sulfonated polyethersulfones for fuel cell applications. J. Polym. Sci. Part A Polym. Chem. 47, 1920–1929 (2009).
Mir, A. A., Matsumura, S., Hlil, A. R. & Hay, A. S. Synthesis and properties of polymers containing 2H-benzimidazol-2-one moieties: Polymerization via N–C coupling reactions. ACS Macro Lett. 1, 194–197 (2012).
Li, Q., Jensen, J. O., Savinell, R. F. & Bjerrum, N. J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34, 449–477 (2009).
Guan, Y. & Pu, H. Decheng Wan. Synthesis and properties of poly[2,2′-(4,4′-(2,6-bis(phenoxy) benzonitrile))-5,5′-bibenzimidazole] for proton conducting membranes in fuel cells. Polym. Chem. 2, 1287–1292 (2011).
Connell, J. W., Hergenrother, P. M. & Smith, J. G. Jr. Synthesis of polybenzimidazoles via aromatic nucleophilic substitution US patent 5412059 (1995).
Hofmann, D., Fritz, L., Ulbrich, J. & Paul, D. Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides. Comp. Theor. Polym. Sci. 10, 419–436 (2000).
Zhang, R. & Mattice, W. L. Flexibility of a new thermoplastic polyimide studied with molecular simulations. Macromolecules 26, 6100–6105 (1993).
Acknowledgements
This research was financially supported by the Research Fund for the Doctoral Program of the Southwest University of Science and Technology (No. 12zx7129), the Opening Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials of the Southwest University of Science and Technology (No. 10zxfk29), the Science and Technology Development Foundation of the Chinese Academy of Physics Engineering (No. 2012A0302015; 2012B0302050) and the Foundation of the Double-Hundred Talents of the Chinese Academy of Engineering Physics (Grant No. ZX8078). We thank the Southwest Computing Center of the Chinese Academy of Physics Engineering for their support in performing the computer simulations.
Supporting information available: Text giving detailed characterization of di(benzimidazolyl)benzenes; Figures showing the DSC, TG and XRD of PABI.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Chang, G., Yang, J., Huang, Y. et al. Poly(arylene benzimidazole)s as novel high-performance polymers. Polym J 45, 1188–1194 (2013). https://doi.org/10.1038/pj.2013.51
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2013.51
Keywords
This article is cited by
-
The ultrasound-assisted synthesis of some novel fused-ring heterocyclic systems bearing structurally diverse benzazoles via a copper-catalyzed cross-coupling reaction
Monatshefte für Chemie - Chemical Monthly (2022)


