Abstract
Polymeric chain-structured complexes were prepared with helical lanthanide complexes (LnL; Ln=EuIII, TbIII, GdIII) and benzene-dicarboxylate derivatives (benzene-1,4-dicarboxylate (bdc), 2-aminoterephtalate (atpa) and 2-hydoloxyterephtalate (htpa)), which show some noteworthy physicochemical properties, photoluminescence and thermal stabilities. The complex EuL-bdc shows bright luminescence originating from EuIII by UV excitation. The emission color can be tuned by mixing with TbL. The structures of these chain complexes were clarified with synchrotron X-ray powder diffraction measurements. The derivation of the linker moiety (bdc, atpa or htpa) was found to affect the intermetal energy transfer from TbIII to EuIII.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Masoomi, M. Y. & Morsali, A. Applications of metal-organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev. 256, 2921–2943 (2012).
Higuchi, M. Electrochromic organic–metallic hybrid polymers: fundamentals and device applications. Polym. J. 41, 511–520 (2009).
Doherty, C. M., Buso, D., Hill, A. J., Furukawa, S., Kitagawa, S. & Falcaro, P. Using functional nano- and microparticles for the preparation of metal-organic framework composites with novel properties. Acc. Chem. Res. 47, 396–405 (2014).
Bradshaw, D., Garai, A. & Huo, J. Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem. Soc. Rev. 41, 2344–2381 (2012).
Betard, A. & Fischer, R. A. Metal-organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).
Hosseini, M. W. Molecular tectonics from simple tectons to complex molecular networks. Acc. Chem. Res. 38, 313–323 (2005).
He, H., Ma, H., Sun, D., Zhang, L., Wang, R. & Sun, D. Porous Lanthanide-organic frameworks: control over interpenetration, gas adsorption, and catalyst properties. Cryst. Growth Des. 13, 3154–3161 (2013).
Lan, Y. Q., Jiang, H. L., Li, S. L. & Xu, Q. Mesoporous metal-organic frameworks with size-tunable cages: selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Adv. Mater. 23, 5015–5020 (2011).
Natur, F. L., Calvez, G., Daiguebonne, C., Guillou, O., Bernot, K., Ledoux, J., Pollès, L. L. & Roiland, C. Coordination polymers based on heterohexanuclear rare earth complexes: toward independent luminescence brightness and color tuning. Inorg. Chem. 52, 6720–6730 (2013).
Li, Z., Zhu, G., Guo, X., Zhao, X., Jin, Z. & Qiu, S. Synthesis, structure, and luminescent and magnetic properties of novel lanthanide metal-organic frameworks with zeolite-like topology. Inorg. Chem. 46, 5174–5178 (2007).
D’Vries, R. F., Iglesias, M., Snejko, N., Alvarez-Garcia, S., Gutiérrez-Pueblaa, E. & Monge, M. A. Mixed lanthanide succinate-sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials. J. Mater. Chem. 22, 1191–1198 (2012).
Decabt, R., Hecke, K. V., Depla, D., Leus, K., Weinberger, D., Driessche, I. V., Voort, P. V. D. & Deun, R. V. Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. Inorg. Chem. 51, 11623–11634 (2012).
Lu, W. G., Jiang, L., Feng, X. L. & Lu, T. B. Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange. Inorg. Chem. 48, 6997–6999 (2009).
Yu, Y., Ma, J. P. & Dong, Y. B. Luminescent humidity sensors based on porous Ln3+-MOFs. Cryst. Eng. Commun. 14, 7175–7160 (2012).
Parker, D., Walton, J. W., Lamarque, L. & Zwier, J. M. Comparative study of the luminescence properties and relative stability of a series of europium(III) complexes bearing one to four coordinated azaxanthone groups. Eur. J. Inorg. Chem. 25, 3961–3966 (2010).
Soulie, M., Latzko, F., Bourrier, E., Placide, V., Butler, S. J., Pal, R., Walton, J. W., Baldeck, P. L., Le Guennic, B., Andraud, C., Zwier, J. M., Lamarque, L., Parker, D. & Maury, O. Comparative analysis of conjugated alkynyl chromophore-triazacyclononane ligands for sensitized emission of europium and terbium. Chem. Eur. J 20, 8636–8646 (2014).
Amghouz, Z., Granda, S. G. & García, J. R. Series of metal organic frameworks assembled from Ln(III), Na(I), and chiral flexible-achiral rigid dicarboxylates exhibiting tunable UV−vis−IR light emission. Inorg. Chem. 51, 1703–1716 (2012).
Thielemann, D. T., Klinger, M., Wolf, T. J. A., Lan, Y., Wernsdorfer, W., Busse, M., Roesky, P. W., Unterreiner, A. N., Pawell, A. K., Junk, P. C. & Deacon, G. B. Novel lanthanide-based polymeric chains and corresponding ultrafast dynamics in solution. Inorg. Chem. 50, 11990–12000 (2011).
Cui, Y., Xu, H., Yue, Y., Guo, Z., Yu, J., Chen, Z., Gao, J., Yang, Y., Qian, G. & Chen, B. A luminescent mixed-lanthanide metal−organic framework thermometer. J. Am Chem. Soc. 134, 3979–3982 (2012).
Miyata, K., Konno, Y., Nakanishi, T., Kobayashi, A., Kato, M., Fushimi, K. & Hasegawa, Y. Chameleon luminophore for sensing temperatures: control of metalto-metal and energy back transfer in lanthanide coordination polymers. Angew. Chem. 125, 6541–6544 (2013).
Cadiau, A., Brites, C. D. S., Costa, P. M. F. J., Ferreira, R. A. S., Rocha, j. & Carlos, L. D. Ratiometric nanothermometer based on an emissive Ln3+-organic framework. ACS Nano 7, 7213–7218 (2013).
D’vries, R. F., Álvarez-García, S., Snegko, N., Bausá, L. E., Puebla, E. G., de Andrés, A. & Monge, M. A Multimetal rare earth MOFs for lighting and thermometry: tailoring color and optimal temperature range through enhanced disulfobenzoic triplet phosphorescence. J. Mater. Chem. C (2013) 1, 6316–6324
Rao, X., Song, T., Gao, J., Cui, Y., Yang, Y., Wu, C., Chen, B. & Qian, G. A Highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. J. Am. Chem. Soc. 135, 15559–15564 (2013).
Cui, Y., Zou, W., Song, R., Yu, J., Zhang, Q., Yang, Y. & Qian, G. A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. Chem. Commun. 50, 719–721 (2014).
Kobayashi, A., Suzuki, Y., Ohba, T., Noro, S., Chang, H. & Kato, M. Ln-Co-based rock-salt-type porous coordination polymers: vapor response controlled by changing the lanthanide ion. Inorg. Chem. 50, 2061–2063 (2011).
Hasegawa, M., Ohtsu, H., Kodama, D., Kasai, T., Sakurai, S., Ishii, A. & Suzuki, K. Luminescence behaviour in acetonitrile and in the solid state of a series of lanthanide complexes with a single helical ligand. New J. Chem. 38, 1225–1234 (2014).
Ohashi, H., Tanigaki, K., Kumashiro, R., Sugihara, S., Hiroshiba, S., Kimura, S., Kato, K. & Takata, M. Low-glancing-angle x-ray diffraction study on the relationship between crystallinity and properties of C60 field effect transistor. Appl. Phys. Lett. 84, 520–522 (2004).
Ishii, A., Habu, K., Kishi, S., Ohtsu, H., Komatsu, T., Osaka, K., Kato, K., Kimura, S., Takata, M., Hasegawa, M. & Shigesato, Y. Novel emission properties of melem caused by the heavy metal effect of lanthanides(III) in a LB film. Photochem. Photobiol. Sci. 6, 804–809 (2007).
Kawamura, Y., Sasabe, H. & Adachi, C. Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films. Jpn J. Appl. Phys. 43, 7729–7730 (2004).
Suzuki, K., Kobayashi, A., Kaneko, S., Takehira, K., Yoshihara, T., Ishida, H., Shiina, Y., Oishi, S. & Tobita, S. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
Kobayashi, A., Suzuki, K., Yoshihara, T. & Tobita, S. Absolute measurements of photoluminescence quantum yields of 1-halonaphthalenes in 77 K rigid solution using an integrating sphere instrument. Chem. Lett. 39, 282–283 (2010).
Wierzbicka, E., Boczar, M. & Wójcik, M. J. Investigation of hydrogen bonds properties in the terephthalic acid. Spectrochim. Acta A 130, 488–493 (2014).
Acknowledgements
Synchrotron radiation experiments were performed at the BL02B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; Proposal No. 2013B1776, 2013A1020 and 2011B1893). This work was partly supported by the Grants-in-Aid of MEXT for Scientific Research on Innovative Areas of 'Fusion Materials: Creative Development of Materials and Exploration of Their Function through Molecular Control (Area Number: 2206)' (No. 23107528 and 25107730), Challenging Exploratory Research (No. 23656544) Young Scientists A (No. 20685011), Young Scientists B (No. 70406833) and the Supported Program for the Strategic Research Foundation at Private Universities, 2013–2017, with a matching fund subsidy.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Sato, S., Ishii, A., Yamada, C. et al. Luminescence of fusion materials of polymeric chain-structured lanthanide complexes. Polym J 47, 195–200 (2015). https://doi.org/10.1038/pj.2014.88
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2014.88
This article is cited by
-
A stoichiometric terbium-europium dyad molecular thermometer: energy transfer properties
Light: Science & Applications (2018)


