Abstract
The C2-, C3-, and C8-linked star-shaped isobutyl-substituted caged silsesquioxane derivatives (3a, 3b and 3c) were prepared by the hydrosilylation of mono-vinyl-, allyl- and octenylisobutyl-T8-silsesquioxane (1a, 1b and 1c), respectively, along with the synthesis of octadimethylsiloxy-Q8-silsesquioxane (2). 3a and 3b formed optically transparent films by casting the solutions onto glass pieces. However, 3c formed an opaque white film. Differential scanning calorimetry traces of 3a and 3b exhibited lower melting points than that of 3c and the appearance of a glass-transition point, suggesting their lower crystallinity, which promotes the formation of transparent films. Wide-angle X-ray scattering measurements suggested that 3a and 3b formed more tightly packed structures after melting. However, 3c formed a less dense structure after melting. The refractive index of the film of 3a (1.4529±0.0005) was lower than that of 3b (1.4556±0.0007), which is due to the density of 3a (1.1433 g cm−3) being less than that of 3b (1.1753 g cm−3).
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Baney, R. H., Itoh, M., Sakakibara, S. & Suzuki, T. Silsesquoxanes. Chem. Rev. 94, 1409–1430 (1995).
Tanaka, K. & Chujo, Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 22, 1733–1746 (2012).
Mikoshiba, S. & Hayase, S. Preparation of low density poly(methylsilsesquixane)s for LSI interlayer dielectrics with low dielectric constant. Fabrication of Ångstrom size pores prepared by baking trifluoropropylsilyl copolymers. J. Mater. Chem. 9, 591–598 (1999).
Lee, J. H., Kim, W. C., Min, S. K., Ree, H. W. & Yoon, D. Y. Synthesis of poly(methyl-co-trifluoroprppyl)silsesquioxanes and their thin films for low dielectric application. Macromol. Mater. Eng. 288, 455–461 (2003).
David, B. C., Paul, D. L. & Franck, R. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 110, 2081–2173 (2010).
Laine, R. M. Nanobuilding blocks based on the [OSiO1.5]x (x=6, 8, 10) octasilsesquioxanes. J. Mater. Chem. 15, 3725–3744 (2005).
Chujo, Y. & Tanaka, K. New polymeric materials based on element blocks. Bull. Chem. Soc. Jpn. 88, 633–643 (2015).
Tanaka, K., Adachi, S. & Chujo, Y. Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J. Polym. Sci. A Polym. Chem 47, 5690–5697 (2009).
Tanaka, K., Adachi, S. & Chujo, Y. Side-chain effect of octa-substituted POSS fillers on refraction in polymer composites. J. Polym. Sci. A Polym. Chem. 48, 5712–5717 (2010).
Huang, J., He, C., Xiao, Y., Mya, K. Y., Dai, J. & Siow, Y. P. Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44, 4491–4499 (2003).
Kopesky, E. T., McKinley, G. H. & Cohen, R. E. Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer 47, 299–309 (2006).
Zhao, Y. & Schiraldi, D. A. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46, 11640–11647 (2005).
Wahab, M. A., Mya, K. Y. & He, C. Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low-k nanocomposite films. J. Polym. Sci. A Polym. Chem. 46, 5887–5896 (2008).
Seurer, B. & Coughlin, E. B. Ethylene-propylene-silsesquioxane thermoplastic elastomers. Macromol. Chem. Phys. 209, 1198–1209 (2008).
Zheng, L., Hong, S., Cardoen, G., Burgaz, E., Gido, S. P. & Coughlin, E. B. Polymer nanocomposites through controlled self-assembly of cubic silsesquioxane scaffolds. Macromolecules 37, 8606–8611 (2004).
Ahn, B., Hirai, T., Jin, S., Rho, Y., Kim, K.-W., Kakimoto, M., Gopalan, P.., Hayakawa, T. & Ree, M. Hierarchical structure in nanoscale thin films of a poly(styrene-b-methacrylate grafted with POSS) (PS214-b-PMAPOSS27 . Macromolecules 43, 10568–10581 (2010).
Wu, J., Ge, Q. & Mather, P. T. PEG-POSS multiblock polyurethanes: synthesis, characterization, and hydrogel formation. Macromolecules 43, 7637–7649 (2010).
Lee, J., Cho, H.-J., Jung, B.-J., Cho, N. S. & Shim, H.-K. Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane. Macromolecules 37, 8523–8529 (2004).
Pyun, J. & Matyjaszewski, K. The synthesis of hybrid polymers using atom transfer radical polymerization: homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 33, 217–220 (2000).
Hirai, T., Leolukman, M., Liu, C. C., Han, E., Kim, Y. J., Ishida, Y., Hayakawa, T., Kakimoto, M., Nealey, P. F. & Gopalan, P. One-step direct-patterning template utilizing self-assembly of POSS-containing block copolymers. Adv. Mater. 21, 4334–4338 (2009).
Liehtenhan, J. D., Otonari, Y. A. & Carr, M. J. Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28, 8435–8437 (1995).
Escudé, N. C. & Chen, E. Y.-X. Stereoregular methacrylate-POSS hybrid polymers: synthesis and nanostructured assemblies. Chem. Mater. 21, 5743–5753 (2009).
Li, L. & Liu, H. Facile construction of hybrid polystyrene with a string of lantern shape from monovinyl-substituted POSS and commercial polystyrene via Friedel-Crafts reaction and its properties. RSC Adv. 4, 46710–46717 (2014).
Lin, H., Qu, J., Zhang, Z., Dong, J. & Zou, H. Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem. Commun. (Camb.) 49, 231–233 (2013).
Shen, Z., Kim, J., Shen, J., Downing, C. M., Lee, S., Kung, H. H. & Kung, M. C. Spherosilicates with peripheral malonic acid and vinyl end groups. Chem. Commun. (Camb.) 49, 3357–3359 (2013).
Markovic, E., Clarke, S., Matisons, J. & Simon, G. P. Synthesis of POSS-methyl methacrylate-based cross-linked hybrid materials. Macromolecules 41, 1685–1692 (2008).
Lee, A. & Lichtenhan, J. D. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31, 4970–4974 (1998).
Choi, J. & Laine, R. M. Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: a three-component hybrid system. Macromolecules 37, 3267–3276 (2004).
Araki, H. & Naka, K. Syntheses of dumbbell-shaped trifluoropropyl-substituted POSS derivatives linked by simple aliphatic chains and their optical transparent thermoplastic films. Macromolecules 44, 6039–6045 (2011).
Tokunaga, T., Shoiriki, M., Mizumo, T. & Kaneko, Y. Preparation of low-crystalline POSS containing two types of alkylammonium groups and its optically transparent film. J. Mater. Chem. C 2, 2496–2501 (2014).
Hasegawa, I., Ino, K. & Ohnishi, H. An improved procedure for synthesis of silyl derivatives of the cubeoctameric silicate anion. Appl. Organomet. Chem. 17, 287–290 (2003).
Choi, J., Yee, A. F. & Laine, R. M. Organic/inorganic hybrid composites from cubic silsesqioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 36, 5666–5682 (2003).
Sasi, kumar R., Ariraman, M. & Alagar, M. Design of lamellar structured POSS/BPZ polybenzoxazine nanocomposites as a novel class of ultra low-k dielectric materials. RSC Adv. 4, 19127–19136 (2014).
Araki, H. & Naka, K. Syntheses and properties of star- and dumbbell-shaped POSS derivatives containing isobutyl groups. Polym. J. 44, 340–346 (2012).
Perrin, F. X., Viet Nguyen, T. B. & Margaillan, A. Linear and branched alkyl substituted octakis(dimethylsiloxy)octasilsesquioxanes: WAXS and thermal properties. Eur. Polym. J. 47, 1370–1382 (2011).
Perrin, F. X., Panaitescu, D. M., Frone, A. N., Radovici, C. & Nicolae, C. The influence of alkyl substituents of POSS in polyethylene nanocomposites. Polymer 54, 2347–2354 (2013).
Zak, P., Pietraszuk, C., Marciniec, B., Spólnik, G. & Danikiewicz, W. Efficient functionalization of cubic monovinylsilsesquioxanes via cross-metathesis and silylative coupling with olefins in the presence of ruthenium complexes. Adv. Synth. Catal. 351, 2675–2682 (2009).
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian 09, Revision C.01. (Gaussian, Inc., Wallingford, CT, USA (2009).
Waddon, A. J. & Coughlin, E. B. Crystal structure of polyhedral oligomeric silsesquioxane (POSS) nano-materials: A study by X-ray diffraction and electron microscopy. Chem. Mater. 15, 4555–4561 (2003).
Acknowledgements
This study is part of a Grant-in-Aid for Scientific Research on Innovative Areas ‘New Polymeric Materials Based on Element-Blocks (No. 2401)’ (24102003) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan. We thank Professor Tsuyoshi Kawai of Nara Institute of Science and Technology for measuring MALDI-TOF-MS, which is supported by Kyoto-Advance Nanotechnology Network. The WAXS experiments were performed at the Photon Factory at the High Energy Accelerator Research Organization under PAC approval, number 2011G612.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Yasumoto, Y., Yamanaka, T., Sakurai, S. et al. Design of low-crystalline and low-density isobutyl-substituted caged silsesquioxane derivatives by star-shaped architectures linked with short aliphatic chains. Polym J 48, 281–287 (2016). https://doi.org/10.1038/pj.2015.114
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2015.114
This article is cited by
-
Tripod-shaped POSS compounds as single-component silsesquioxane hybrids
Polymer Journal (2024)
-
Single-component optically transparent film of a star-shaped cage silsesquioxane derivative and its phase change behavior
Polymer Journal (2022)
-
Synthesis and properties of hyperbranched polymers by polymerization of an AB3-type incompletely condensed cage silsesquioxane (IC-POSS) monomer
Polymer Journal (2018)
-
Development of macromolecules and supramolecules based on silicon and arsenic chemistries
Polymer Journal (2018)
-
Remarkably high miscibility of octa-substituted POSS with commodity conjugated polymers and molecular fillers for the improvement of homogeneities of polymer matrices
Polymer Journal (2016)


