Abstract
Boron-moiety-containing aluminoxanes (BMAOs) were prepared from the partial protonolysis of Me3Al using various arylboronic acids. Compared with methylaluminoxane (MAO) generated from the hydrolysis of Me3Al, BMAO prepared from C6F5B(OH)2 and Me3Al induced a higher activity at the same Al/Ti ratio in the Ti-based olefin polymerization catalyst (ansa-Me2Si(Flu)(NtBu)TiMe2; 5). The time course of propylene consumption when using BMAO showed the deactivation of the catalyst, whereas the 5–dMAO system promoted a living polymerization. Among the BMAOs, only those derived from arylboronic acids with electron-withdrawing groups were observed to act as efficient cocatalysts.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Chen, E. Y.-X. & Marks, T. J. Cocatalyst for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. Chem. Rev. 100, 1391–1434 (2000).
Pèdeutour, J.–N., Radhakrishnan, K., Cramail, H. & Deffieux, A. Reactivity of metallocene catalysts for olefin polymerization: influence of activator nature and structure. Macromol. Rapid Commun. 22, 1095–1123 (2001).
Zijlstra, H. S. & Harder, S. Methylalumoxane: history, production, properties, and applications. Eur. J. Inorg. Chem. 2015, 19–43 (2015).
Andersen, A., Cordes, H.-G., Herwig, J., Kaminsky, W., Merck, A., Mottweiler, R., Pein, J., Sinn, H. & Vollmer, H.-J. Halogen-free soluble Ziegler catalysts for the polymerization of ethylene. control of molecular weight by choice of temperature. Angew. Chem. Int. Ed. 15, 630–632 (1976).
Gianetti, E., Nicoletti, G. M. & Mazzocchi, R. Homogeneous Ziegler-Natta catalysis. II. Ethylene polymerization by IVB transition metal complexes/methyl aluminoxane catalyst systems. J. Polym. Sci. Polym. Chem. Ed. 23, 2117–2134 (1985).
Sugano, T., Matsubara, K., Fujita, T. & Takahashi, T. Characterization of alumoxanes by 27Al-NMR spectra. J. Mol. Catal. 82, 93–101 (1993).
Babushkin, D. E., Semikolenova, N. V., Panchenko, V. N., Sobolev, A. P., Zakharov, V. A. & Talsi, E. P. Multinuclear NMR investigation of methylaluminoxane. Macromol. Chem. Phys. 198, 3845–3854 (1997).
Bryant, P. L., Harwell, C. R., Mrse, A. A., Emery, E. F., Gan, Z., Caldwell, T., Reyes, A. P., Kuhns, P., Hoyt, D. W., Simeral, L. S., Hall, R. W. & Butler, L. G. Structural Characterization of MAO and Related Aluminum Complexes. 1. Solid-State 27Al NMR with Comparison to EFG Tensors from ab Initio Molecular Orbital Calculations. J. Am. Chem. Soc. 123, 12009–12017 (2001).
Babushkin, D. E. & Brintzinger, H.-H. Activation of dimethyl zirconocene by methylaluminoxane (MAO)–size estimate for Me-MAO anions by pulsed field-gradient NMR. J. Am. Chem. Soc. 124, 12869–12873 (2002).
Eilertsen, J. L., Hall, R. W., Simeral, L. S. & Butler, L. G. Tools and strategies for processing diffusion-ordered 2D NMR spectroscopy (DOSY) of a broad, featureless resonance: an application to methylaluminoxane (MAO). Anal. Bioanal. Chem. 378, 1574–1578 (2004).
Sishta, C., Hathorn, R. M. & Marks, T. J. Group 4 metallocene-alumoxane olefin polymerization catalysts. CPMAS-NMR spectroscopic observation of cation-like zirconocene alkyls. J. Am. Chem. Soc. 114, 1112–1114 (1992).
Tritto, I., Li, S., Sacchi, M. C. & Zannoni, G. lH and 13C NMR spectroscopic study of titanium metallocene–aluminoxane catalysts for olefin polymerizations. Macromolecules 26, 7111–7115 (1993).
Gassman, P. G. & Callstrom, M. R. Isolation, and partial characterization by XPS, of two distinct catalysts in the Ziegler-Natta polymerization of ethylene. J. Am. Chem. Soc. 109, 7875–7876 (1987).
Ystenes, M., Eilertsen, J. L., Liu, J., Ott, M., Rytter, E. & Støvneng, J. A. Experimental and Theoretical investigations of the structure of methylaluminoxane (MAO) cocatalysts for olefin polymerization. J. Polym. Sci. Part A: Polym. Chem 38, 3106–3127 (2000).
Coevoet, D., Cramail, H. & Deffieux, A. U.V./visible spectroscopic study of the rac-Et(Ind)2ZrCl2/MAO olefin polymerization catalytic system, 1. Investigation in toluene. Macromol. Chem. Phys. 199, 1451–1457 (1998).
Coevoet, D., Cramail, H. & Deffieux, A. U.V./visible spectroscopic study of the rac-Et(Ind)2ZrCl2/MAO olefin polymerization catalytic system, 2. Investigation in CH2Cl2. Macromol. Chem. Phys. 199, 1459–1464 (1998).
Trefz, T. K., Henderson, M. A., Wang, M. Y., Collins, S. & McIndoe, J. S. Mass spectrometric characterization of methylaluminoxane. Organometallics 32, 3149–3152 (2013).
Charpentier, P. A., Zhu, S., Hamielec, A. E. & Brook, M. A. Effect of aluminoxane on semi-batch polymerization of ethylene using zirconocene dichloride. Polymer 39, 6501–6511 (1998).
Mason, M. R., Smith, J. M., Bott, S. G. & Barron, A. R. Hydrolysis of Tri-tert-butylaluminum: The first structural characterization of alkylalumoxanes [(R2Al)2O]n and (RAlO)n. J. Am. Chem. Soc. 115, 4971–4984 (1993).
Harlan, C. J., Mason, M. R. & Barron, A. R. tert-Butylaluminum hydroxides and oxides: structural relationship between alkylalumoxanes and alumina gels. Organometallics 13, 2957–2969 (1994).
Harlan, C. J., Bott, S. G. & Barron, A. R. Three-coordinate aluminum is not a prerequisite for catalytic activity in the zirconocene-alumoxane polymerization of ethylene. J. Am. Chem. Soc. 117, 6465–6474 (1995).
Richter, B., Meetsma, A., Hessen, B. & Teuben, J. H. Synthesis and structural characterisation of a boralumoxane capable of activating a zirconocene ethene polymerisation catalyst. Chem. Commun. 1286–1287 (2001).
Richter, B., Meetsma, A., Hessen, B. & Teuben, J. H. Structural characterization of a cationic zirconocene olefin polymerization catalyst with its methylated boralumoxane counterion. Angew. Chem. Int. Ed. 41, 2166–2169 (2002).
Bai, G., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. Mononuclear aluminum hydroxide for the design of well-defined homogeneous catalysts. J. Am. Chem. Soc. 127, 3449–3455 (2005).
Kissin, Y. V. & Brandolini, A. J. An alternative route to methylalumoxane: synthesis, structure, and the use of model methylalumoxanes as cocatalysts for transition metal complexes in polymerization reactions. Macromolecules 36, 18–26 (2003).
Fischer, D., Jüngling, S. & Mülhaupt, R. Donor- and acceptor-modified metallocene-based homogeneous Ziegler-Natta catalysts. Makromol. Chem. Macromol. Symp. 66, 191–202 (1993).
Lee, C. H., Lee, S. J., Park, J. W., Kim, K. H., Lee, B. Y. & Oh, J. S. Preparation of Al(C6F5)3 and its use for the modification of methylalumoxane. J. Mol. Catal. A 132, 231–239 (1998).
Nishii, K., Hagihara, H., Ikeda, T., Akita, M. & Shiono, T. Stereospecific polymerization of propylene with group 4 ansa-fluorenylamidodimethyl complexes. J. Organomet. Chem. 691, 193–201 (2006).
Nair, N. G., Blanco, M., West, W., Weise, F. C., Greenbaum, S. & Reddy, V. P. Fluorinated boroxin-based anion receptors for lithium ion batteries: fluoride anion binding, Ab initio calculations, and ionic conductivity studies. J. Phys. Chem. A 113, 5918–5926 (2009).
Imhoff, D. W., Simeral, L. S., Sangokoya, S. A. & Peel, J. H. Characterization of methylaluminoxanes and determination of trimethylaluminum using proton NMR. Organometallics 17, 1941–1945 (1998).
Frohn, H.-J., Adonin, N. Y., Bardin, V. V. & Starichenko, V. F. Polyfluoroorganoboron-oxygen compounds. 1 polyfluorinated Aryl(dihydroxy)boranes and Tri(aryl)boroxins. Z. Anorg. Allg. Chem. 628, 2827–2833 (2002).
Hasan, T., Ioku, A., Nishii, K., Shiono, T. & Ikeda, T. Syndiospecific living polymerization of propene with [t-BuNSiMe2Flu]TiMe2 using MAO as cocatalyst. Macromolecules 34, 3142–3145 (2001).
Acknowledgements
This work was supported by Grant-in-Aid for Young Scientists (B) (No. 26810070) from the Japan Society for the Promotion of Science (JSPS), Japan. We also greatly appreciate a generous donation of MMAO from Tosoh-Finechem, Japan.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Tanaka, R., Hirose, T., Nakayama, Y. et al. The preparation of boron-containing aluminoxanes and their application as cocatalysts in the polymerization of olefins. Polym J 48, 67–71 (2016). https://doi.org/10.1038/pj.2015.81
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2015.81


