Abstract
The thin film stabilities of ω-N-(3-(dimethylamino)propyl)propylamide-terminated polystyrene (PS-N) and its blends with conventional polystyrene (PS-H) supported on silicon wafers with a native oxide layer were examined. Whereas a 20-nm-thick film of PS-H with a number-average molecular weight of ∼50k decomposed at 423 K, a comparable PS-N film and blended films containing a PS-N fraction of >40 wt% were stable. Although the local conformation of chains at the substrate interface was not the same for PS with and without the functional end group, the glass transition temperature at the interface was identical for both PS-H and PS-N. The residual adsorbed layer on the substrate after washing the films with a good solvent was thicker for PS-N than for PS-H. This implies that end functionalization, rather than segmental dynamics, affects chain movement on a large scale.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Yeh, J.-M. & Chang, K.-C. Polymer/layered silicate nanocomposite anticorrosive coatings. J. Ind. Eng. Chem. 14, 275–291 (2008).
Cele, N. & Ray, S. S. Recent progress on nafion-based nanocomposite membranes for fuel cell applications. Macromol. Mater. Eng. 294, 719–738 (2009).
Tripathi, B. P. & Shahi, V. K. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36, 945–979 (2011).
Calebrese, C., Hui, L., Schadler, L. S. & Nelson, J. K. A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 18, 938–945 (2011).
Feldman, D. Elastomer nanocomposite; properties. J. Macromol. Sci., Part A 49, 784–793 (2012).
Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J. & Xu, G. Polymer nanocomposite foams. Composit. Sci. Technol. 65, 2344–2363 (2005).
Holder, E., Tessler, N. & Rogach, A. L. Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J. Mater. Chem. 18, 1064–1078 (2008).
Beecroft, L. L. & Ober, C. K. Nanocomposite materials for optical applications. Chem. Mater. 9, 1302–1317 (1997).
Cong, H., Radosz, M., Towler, B. F. & Shen, Y. Polymer-inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 55, 281–291 (2007).
Porter, D., Metcalfe, E. & Thomas, M. J. K. Nanocomposite fire retardants – a review. Fire Mater. 24, 45–52 (2000).
Schexnailder, P. & Schmidt, G. Nanocomposite polymer hydrogels. Colloid Polym. Sci. 287, 1–11 (2009).
Haraguchi, K. Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci. 11, 47–54 (2007).
Stamm, M. Polymer Surfaces and Interfaces: Characterization, Modification and Applications, Springer-Verlag, Berlin Heidelberg, (2008).
Tsuruta, H., Fujii, Y., Kai, N., Kataoka, H., Ishizone, T., Doi, M., Morita, H. & Tanaka, K. Local conformation and relaxation of polystyrene at substrate interface. Macromolecules 45, 4643–4649 (2012).
Shen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519–525 (1989).
Chen, Z., Shen, Y. R. & Somorjai, G. A. Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu. Rev. Phys. Chem. 53, 437–465 (2002).
Zhuang, X., Miranda, P. B., Kim, D. & Shen, Y. R. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys. Rev. B 59, 12632–12640 (1999).
Hirose, C., Akamatsu, N. & Domen, K. Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups. J. Chem. Phys. 96, 997–1004 (1992).
Napolitano, S. & Wübbenhorst, M. Effect of a reduced mobility layer on the interplay between molecular relaxations and diffusion-limited crystallization rate in ultrathin polymer films. J. Phys. Chem. B 111, 5775–5780 (2007).
Gin, P., Jiang, N., Liang, C., Taniguchi, T., Akgun, B., Satija, S. K., Endoh, M. K. & Koga, T. Revealed architecture of adsorbed polymer chains at solid-polymer melt interfaces. Phys. Rev. Lett. 109, 265501 (2012).
Jiang, N., Shang, J., Di, X., Endoh, M. K. & Koga, T. Formation mechanism of high-density, flattened polymer nanolayers adsorbed on planar solids. Macromolecules 47, 2682–2689 (2014).
Tanaka, K., Tateishi, Y., Okada, Y. & Nagamura, T. Interfacial mobility of polymers on inorganic solids. J. Phys. Chem. B 113, 4571–4577 (2009).
Kawaguchi, D., Tateishi, Y. & Tanaka, K. Time-resolved fluorescence analysis for dye-labeled polystyrene in thin films. J. Non-Cryst. Solids 407, 284–287 (2015).
Paul, D. R. & Robeson, L. M. Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008).
Zou, H., Wu, S. & Shen, J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108, 3893–3957 (2008).
Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y. & Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog. Polym. Sci. 38, 1232–1261 (2013).
Liu, J., Tanaka, T., Sivula, K., Alivisatos, A. P. & Fréchet, J. M. Employing end-functional polythiophene to control the morphology of nanocrystal−polymer composites in hybrid solar cells. J. Am. Chem. Soc. 126, 6550–6551 (2004).
Liu, X., Zhao, S., Zhang, X., Li, X. & Bai, Y. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites. Polymer 55, 1964–1976 (2014).
Reiter, G. Dewetting of thin polymer films. Phys. Rev. Lett. 68, 75–78 (1992).
Reiter, G. Unstable thin polymer films: rupture and dewetting processes. Langmuir 9, 1344–1351 (1993).
Henn, G., Bucknall, D. G., Stamm, M., Vanhoorne, P. & Jérôme, R. Chain end effects and dewetting in thin polymer films. Macromolecules 29, 4305–4313 (1996).
Jones, R. A. L. & Richards, R. W. Polymers at Surfaces and Interfaces, (Cambridge University Press, Cambridge, 1999).
Bäumchen, O. & Jacobs, K. Slip effects in polymer thin films. J. Phys. Condens. Matter 22, 033102 (2010).
Paeng, K., Swallen, S. F. & Ediger, M. D. Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133, 8444–8447 (2011).
Yang, Z., Fujii, Y., Lee, F. K., Lam, C.-H. & Tsui, O. K. C. Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676–1679 (2010).
Stafford, C. M., Vogt, B. D., Harrison, C., Julthongpiput, D. & Huang, R. Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39, 5095–5099 (2006).
O'Connell, P. A. & McKenna, G. B. Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307, 1760–1763 (2005).
Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695–700 (2003).
Fujii, Y., Yang, Z., Leach, J., Atarashi, H., Tanaka, K. & Tsui, O. K. C. Affinity of polystyrene films to hydrogen-passivated silicon and its relevance to the Tg of the films. Macromolecules 42, 7418–7422 (2009).
Horinouchi, A., Yamada, N. L. & Tanaka, K. Aggregation states of polystyrene at nonsolvent interfaces. Langmuir 30, 6565–6570 (2014).
Gautam, K. S., Schwab, A. D., Dhinojwala, A., Zhang, D., Dougal, S. M. & Yeganeh, M. S. Molecular structure of polystyrene at air/polymer and solid/polymer interfaces. Phys. Rev. Lett. 85, 3854–3857 (2000).
Briggman, K. A., Stephenson, J. C., Wallace, W. E. & Richter, L. J. Absolute molecular orientational distribution of the polystyrene surface. J. Phys. Chem. B 105, 2785–2791 (2001).
Curtis, A. D., Calchera, A. R., Asplund, M. C. & Patterson, J. E. Observation of sub-surface phenyl rings in polystyrene with vibrationally resonant sum-frequency generation. Vib. Spectrosc. 68, 71–81 (2013).
Zhang, C., Fujii, Y. & Tanaka, K. Effect of long range interactions on the glass transition temperature of thin polystyrene films. ACS Macro Lett. 1, 1317–1320 (2012).
Durning, C. J., O’Shaughnessy, B., Sawhney, U., Nguyen, D., Majewski, J. & Smith, G. S. Adsorption of poly(methyl methacrylate) melts on quartz. Macromolecules 32, 6772–6781 (1999).
Hu, H. & Granick, S. Viscoelastic dynamics of confined polymer melts. Science 258, 1339–1342 (1992).
Kaufman, S., Slichter, W. P. & Davis, D. D. Nuclear magnetic resonance study of rubber–carbon black interactions. J. Polym. Sci. A Polym. Phys. 9, 829–839 (1971).
Ito, M., Nakamura, T. & Tanaka, K. Pulsed NMR study on the silica-filled rubber systems. J. Appl. Polym. Sci. 30, 3493–3504 (1985).
Kirst, K. U., Kremer, F. & Litvinov, V. M. Broad-band dielectric spectroscopy on the molecular dynamics of bulk and adsorbed poly(dimethylsiloxane). Macromolecules 26, 975–980 (1993).
Zhang, Y., Ge, S., Tang, B., Koga, T., Rafailovich, M. H., Sokolov, J. C., Peiffer, D. G., Li, Z., Dias, A. J., McElrath, K. O., Lin, M. Y., Satija, S. K., Urquhart, S. G., Ade, H. & Nguyen, D. Effect of carbon black and silica fillers in elastomer blends. Macromolecules 34, 7056–7065 (2001).
Papon, A., Saalwächter, K., Schäler, K., Guy, L., Lequeux, F. & Montes, H. Low-field NMR investigations of nanocomposites: polymer dynamics and network effects. Macromolecules 44, 913–922 (2011).
Papon, A., Montes, H., Hanafi, M., Lequeux, F., Guy, L. & Saalwächter, K. Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. Phys. Rev. Lett. 108, 065702 (2012).
Choi, S.-S. & Ko, E. Novel test method to estimate bound rubber formation of silica-filled solution styrene-butadiene rubber compounds. Polym. Test. 40, 170–177 (2014).
Acknowledgements
This work was partly supported by Grant-in-Aids for Scientific Research on Innovative Areas ‘New Polymeric Materials Based on Element-Blocks’ (No. 15H00758) program and for Scientific Research (A) (No. 15H02183) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We are also grateful for support from JST SENTANKEISOKU (13A0004).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Shimomura, S., Inutsuka, M., Tajima, K. et al. Stabilization of polystyrene thin films by introduction of a functional end group. Polym J 48, 949–953 (2016). https://doi.org/10.1038/pj.2016.58
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2016.58
This article is cited by
-
Aggregation States of Poly(4-methylpentene-1) at a Solid Interface
Polymer Journal (2019)
-
Segregation of an amine component in a model epoxy resin at a copper interface
Polymer Journal (2019)


