Abstract
In this manuscript, the scalability and recyclability of the catalytic transesterifications of polysaccharides with 1-ethyl-3-methylimidazolium acetate (EmimOAc) as both the solvent and the organocatalyst were evaluated. For the organocatalytic transesterifications of cellulose with EmimOAc, EmimOAc was recycled four times without an obvious decrease in its catalytic activity, and the recovery ratio of EmimOAc was sufficiently high (at least 96 wt%). To show the applicability of EmimOAc-catalyzed transesterifications, the EmimOAc-catalyzed cellulose modification was expanded to a gram-scale reaction with various polysaccharide sources, such as pulps, rayon, xylan, pullulan, and dextrin, which provides the corresponding polysaccharide esters with a practically perfect degree of substitution values.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).
James, T., van Gemmeren, M. & List, B. Development and applications of disulfonimides in enantioselective organocatalysis. Chem. Rev. 115, 9388–9409 (2015).
Bertelsen, S. & Jorgensen, K. A. Organocatalysis—after the gold rush. Chem. Soc. Rev. 38, 2178–2189 (2009).
Schreiner, P. R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev. 32, 289–296 (2003).
Zhang, Z. & Schreiner, P. R. (Thio)urea organocatalysis—what can be learnt from anion recognition? Chem. Soc. Rev. 38, 1187–1198 (2009).
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).
Dove, A. P., Pratt, R. C., Lohmeijer, B. G. G., Culkin, D. A., Hagberg, E. C., Nyce, G. W., Waymouth, R. M. & Hedrick, J. L. N-Heterocyclic carbenes: Effective organic catalysts for living polymerization. Polymer 47, 4018–4025 (2006).
Dove, A. P., Pratt, R. C., Lohmeijer, B. G. G., Waymouth, R. M. & Hedrick, J. L. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J. Am. Chem. Soc. 127, 13798–13799 (2005).
Nederberg, F., Connor, E. F., Möller, M., Glauser, T. & Hedrick, J. L. New paradigms for organic catalysts: the first organocatalytic living polymerization. Angew. Chem. Int. Ed. 40, 2712–2715 (2001).
Coulembier, O., Sanders, D. P., Nelson, A., Hollenbeck, A. N., Horn, H. W., Rice, J. E., Fujiwara, M., Dubois, P. & Hedrick, J. L. Hydrogen-bonding catalysts based on fluorinated alcohol derivatives for living polymerization. Angew. Chem. Int. Ed. 48, 5170–5173 (2009).
Sanda, F., Sanada, H., Shibasaki, Y. & Endo, T. Star polymer synthesis from ɛ-caprolactone utilizing polyol/protonic acid initiator. Macromolecules 35, 680–683 (2002).
Chuma, A., Horn, H. W., Swope, W. C., Pratt, R. C., Zhang, L., Lohmeijer, B. G. G., Wade, C. G., Waymouth, R. M., Hedrick, J. L. & Rice, J. E. The reaction mechanism for the organocatalytic ring-opening polymerization of l-lactide using a guanidine-based catalyst: hydrogen-bonded or covalently bound? J. Am. Chem. Soc. 130, 6749–6754 (2008).
Zhang, L., Nederberg, F., Pratt, R. C., Waymouth, R. M., Hedrick, J. L. & Wade, C. G. Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40, 4154–4158 (2007).
Bourissou, D., Martin-Vaca, B., Dumitrescu, A., Graullier, M. & Lacombe, F. Controlled cationic polymerization of lactide. Macromolecules 38, 9993–9998 (2005).
Raynaud, J., Absalon, C., Gnanou, Y. & Taton, D. N-heterocyclic carbene-induced zwitterionic ring-opening polymerization of ethylene oxide and direct synthesis of α,ω-difunctionalized poly(ethylene oxide)s and poly(ethylene oxide)-b-poly(ɛ-caprolactone) block copolymers. J. Am. Chem. Soc. 131, 3201–3209 (2009).
Raynaud, J., Absalon, C., Gnanou, Y. & Taton, D. N-heterocyclic carbene-organocatalyzed ring-opening polymerization of ethylene oxide in the presence of alcohols or trimethylsilyl nucleophiles as chain moderators for the synthesis of α,ω-heterodifunctionalized poly(ethylene oxide)s. Macromolecules 43, 2814–2823 (2010).
Misaka, H., Sakai, R., Satoh, T. & Kakuchi, T. Synthesis of high molecular weight and end-functionalized poly(styrene oxide) by living ring-opening polymerization of styrene oxide using the alcohol/phosphazene base initiating system. Macromolecules 44, 9099–9107 (2011).
Lohmeijer, B. G. G., Dubois, G., Leibfarth, F., Pratt, R. C., Nederberg, F., Nelson, A., Waymouth, R. M., Wade, C. & Hedrick, J. L. Organocatalytic living ring-opening polymerization of cyclic carbosiloxanes. Org. Lett. 8, 4683–4686 (2006).
Fuchise, K., Chen, Y., Satoh, T. & Kakuchi, T. Recent progress in organocatalytic group transfer polymerization. Polym. Chem. 4, 4278–4291 (2013).
Fevre, M., Vignolle, J., Heroguez, V. & Taton, D. Tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP) as potent organocatalyst for group transfer polymerization of alkyl (meth)acrylates. Macromolecules 45, 7711–7718 (2012).
Raynaud, J., Gnanou, Y. & Taton, D. Group transfer polymerization of (meth)acrylic monomers catalyzed by N-heterocyclic carbenes and synthesis of all acrylic block copolymers: evidence for an associative mechanism. Macromolecules 42, 5996–6005 (2009).
Raynaud, J., Liu, N., Gnanou, Y. & Taton, D. Expanding the Scope of group transfer polymerization using N-heterocyclic carbenes as catalysts: application to miscellaneous (meth)acrylic monomers and kinetic investigations. Macromolecules 43, 8853–8861 (2010).
Scholten, M. D., Hedrick, J. L. & Waymouth, R. M. Group transfer polymerization of acrylates catalyzed by N-heterocyclic carbenes. Macromolecules 41, 7399–7404 (2008).
Zhang, Y., Lay, F., GarcÃa-GarcÃa, P., List, B. & Chen, E. Y. X. High-speed living polymerization of polar vinyl monomers by self-healing silylium catalysts. Chem. Eur. J. 16, 10462–10473 (2010).
Pinaud, J., Vijayakrishna, K., Taton, D. & Gnanou, Y. Step-growth polymerization of terephthaldehyde catalyzed by N-heterocyclic carbenes. Macromolecules 42, 4932–4936 (2009).
Matsuoka, S.-i., Namera, S. & Suzuki, M. Oxa-Michael addition polymerization of acrylates catalyzed by N-heterocyclic carbenes. Polym. Chem. 6, 294–301 (2015).
Kakuchi, R., Wongsanoh, K., Hoven, V. P. & Theato, P. Activation of stable polymeric esters by using organo-activated acyl transfer reactions. J. Polym. Sci. Part A 52, 1353–1358 (2014).
Fevre, M., Pinaud, J., Gnanou, Y., Vignolle, J. & Taton, D. N-Heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Chem. Soc. Rev. 42, 2142–2172 (2013).
Mespouille, L., Coulembier, O., Kawalec, M., Dove, A. P. & Dubois, P. Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Prog.Polym. Sci. 39, 1144–1164 (2014).
Hong, M. & Chen, E. Y. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained gamma-butyrolactone. Angew. Chem. Int. Ed. 55, 4188–4193 (2016).
Gowda, R. R. & Chen, E. Y. X. Organocatalytic and chemoselective polymerization of multivinyl-functionalized γ-butyrolactones. ACS Macro Lett. 5, 772–776 (2016).
Zhang, Y., Schmitt, M., Falivene, L., Caporaso, L., Cavallo, L. & Chen, E. Y. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: mechanisms of chain initiation propagation and termination. J. Am. Chem. Soc. 135, 17925–17942 (2013).
Schenzel, A., Hufendiek, A., Barner-Kowollik, C. & Meier, M. A. R. Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters. Green Chem. 16, 3266–3271 (2014).
Chen, C. Y., Chen, M. J., Zhang, X. Q., Liu, C. F. & Sun, R. C. Per-O-acetylation of cellulose in dimethyl sulfoxide with catalyzed transesterification. J. Agric. Food. Chem. 62, 3446–3452 (2014).
Kakuchi, R., Ito, R., Nomura, S., Abroshan, H., Ninomiya, K., Ikai, T., Maeda, K., Kim, H. J. & Takahashi, K. A mechanistic insight into the organocatalytic properties of imidazolium-based ionic liquids and a positive co-solvent effect on cellulose modification reactions in an ionic liquid. RSC Adv. 7, 9423–9430 (2017).
Kakuchi, R., Yamaguchi, M., Endo, T., Shibata, Y., Ninomiya, K., Ikai, T., Maeda, K. & Takahashi, K. Efficient and rapid direct transesterification reactions of cellulose with isopropenyl acetate in ionic liquids. RSC Adv. 5, 72071–72074 (2015).
Hinner, L. P., Wissner, J. L., Beurer, A., Nebel, B. A. & Hauer, B. Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chem. 18, 6099–6107 (2016).
Klemm, D., Heublein, B., Fink, H.-P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005).
Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).
Gericke, M., Fardim, P. & Heinze, T. Ionic liquids–promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17, 7458–7502 (2012).
Kelemen, Z., Holloczki, O., Nagy, J. & Nyulaszi, L. An organocatalytic ionic liquid. Org. Biomol. Chem. 9, 5362–5364 (2011).
Schlufter, K., Schmauder, H.-P., Dorn, S. & Heinze, T. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol. Rapid Commun. 27, 1670–1676 (2006).
Lin, B., Dong, H., Li, Y., Si, Z., Gu, F. & Yan, F. Alkaline stable C2-substituted imidazolium-based anion-exchange membranes. Chem. Mater. 25, 1858–1867 (2013).
Acknowledgements
This research was promoted by the COI program ‘Construction of next-generation infrastructure using innovative materials—Realization of a safe and secure society that can coexist with the Earth for centuries’—supported by MEXT and JST. This study was also supported in part by the Advanced Low Carbon Technology Research and Development Program (ALCA) of the JST and the Cross-ministerial Strategic Innovation Promotion Program (SIP) from the JST.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Rights and permissions
About this article
Cite this article
Van Nguyen, Q., Nomura, S., Hoshino, R. et al. Recyclable and scalable organocatalytic transesterification of polysaccharides in a mixed solvent of 1-ethyl-3-methylimidazolium acetate and dimethyl sulfoxide. Polym J 49, 783–787 (2017). https://doi.org/10.1038/pj.2017.49
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2017.49


