Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pathogenic ZNF319 variant disrupts nuclear localization and transcriptional regulation to cause a novel form of autosomal recessive leukodystrophy

Abstract

Leukodystrophies are inherited disorders characterized by progressive degeneration of white matter in the central nervous system. Here, we investigate a previously uncharacterized autosomal recessive leukodystrophy which is associated with the homozygous missense variant in ZNF319 (c.800T>C; p.Phe267Ser) in an 18-year-old male presenting with spasticity, ataxia, cognitive decline, and white matter abnormalities on MRI. The variant was absent in population databases (gnomAD, ClinVar) and predicted to be pathogenic by multiple in silico tools. Molecular dynamics simulations revealed that F267 is a stabilizing residue within a β-strand of the zinc finger domain, forming π-stacking and hydrophobic interactions that are lost upon substitution with serine, leading to structural instability, increased flexibility, and protein unfolding. Despite normal transcript and protein expression, ZNF319-F267S mislocalized to the cytoplasm due to disruption of its bipartite nuclear localization signal (NLS), resulting in impaired interaction with importin α1 (KPNA1). Functional analysis confirmed that the mutation disrupts nuclear transport and prevents transcriptional activation of genes involved in myelination. Protein interaction network and gene ontology analysis highlighted ZNF319’s role in transcriptional regulation and its localization in the CHOP-C/EBP transcriptional complex. Expression profiling demonstrated ZNF319 enrichment in oligodendrocytes and white matter regions, correlating with the observed leukoencephalopathy. Our study identifies ZNF319 as a novel gene implicated in human leukodystrophy and highlights how a single-point mutation can compromise nuclear import and transcriptional function, leading to white matter degeneration. These findings expand the genetic landscape of leukodystrophies and provide mechanistic insights into transcriptional regulation in myelin maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data generated or analyzed during this study are available from the corresponding author upon request.

References

  1. van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol. 2017;134:351–82.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vanderver A, Prust M, Tonduti D, Mochel F, Hussey HM, Helman G, et al. Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab. 2016;119:164–73.

    Google Scholar 

  3. Matthews JM. Zinc fingers: modular protein domains with multiple functions. Biochim Biophys Acta. 2001;1547:116–26.

    Google Scholar 

  4. Mirzaa GM, Chong JX, Piton A, Popp B, Foss K, Guo H, et al. De novo and inherited variants in ZNF292 underlie a neurodevelopmental disorder with features of autism spectrum disorder. Genet Med. 2020;22:538–46.

    Article  PubMed  CAS  Google Scholar 

  5. Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet. 2017;98:541–52.

    Article  Google Scholar 

  6. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, et al. Zinc-finger proteins in health and disease. Cell Death Discov. 2017;3:17071.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Quart Rev Biophys. 2010;43:1–21.

    Article  CAS  Google Scholar 

  9. Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem. 2007;76:51–74.

    Article  PubMed  CAS  Google Scholar 

  10. Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell. 2008;15:829–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. DeLano WL. The PyMOL Molecular Graphics System. 2002. https://pymol.org.

  13. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein–protein docking. Nat Protoc. 2017;12:255–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–D894.

    Article  PubMed  CAS  Google Scholar 

  16. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–W388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529–D541.

    Article  PubMed  CAS  Google Scholar 

  19. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612.

    Article  PubMed  CAS  Google Scholar 

  20. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9.

    Article  PubMed  CAS  Google Scholar 

  22. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  Google Scholar 

  23. Papatheodorou I, Moreno P, Manning J, Fuentes AM, George N, Fexova S, et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res. 2020;48:D77–D83.

    PubMed  CAS  Google Scholar 

  24. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25.

    Article  Google Scholar 

  25. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14:71–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the proband and his family for their participation and continued support for this study.

Funding

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/257/45.

Author information

Authors and Affiliations

Authors

Contributions

S Rehan Ahmad: Conceptualization, study design, experimental execution, data analysis, and manuscript writing. Md. Zeyaullah: Methodology and data analysis. Yousef Zahrani: Genetic counseling and contribution to manuscript preparation. Adam Dawria: Clinical evaluation, diagnosis, and genotype–phenotype interpretation. Abdelrhman AG Altijani: Methodology and data analysis. Ahmed Salih: Methodology and data analysis.

Corresponding author

Correspondence to S Rehan Ahmad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.R., Zeyaullah, M., Zahrani, Y. et al. Pathogenic ZNF319 variant disrupts nuclear localization and transcriptional regulation to cause a novel form of autosomal recessive leukodystrophy. J Hum Genet 70, 577–587 (2025). https://doi.org/10.1038/s10038-025-01386-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s10038-025-01386-2

Search

Quick links