Table 1 Comparison of the linear SVM classification on ModelNet40
From: PointMoment: a mixed-moment self-supervised learning approach for 3D Terracotta Warriors
Method | ModelNet40 |
|---|---|
3D-GAN42 | 83.3 |
Latent-GAN17 | 85.7 |
SO-Net43 | 87.3 |
FoldingNet18 | 88.4 |
MRTNet44 | 86.4 |
3D-PointCapsNet45 | 88.9 |
MAP-VAE46 | 88.4 |
DepthContrast37 | 85.4 |
Jigsaw47+PointNet | 87.3 |
Rotation11+PointNet | 88.6 |
OcCo19+PointNet | 88.7 |
STRL24+PointNet | 88.3 |
PointMoment-all(Ours)+PointNet | 88.8 |
PointMoment-singler(Ours)+PointNet | 88.8 |
Jigsaw47 + DGCNN | 90.6 |
Rotation11 + DGCNN | 90.8 |
STRL24 + DGCNN | 90.9 |
OcCo19 + DGCNN | 89.2 |
PointMoment-all(Ours)+DGCNN | 90.9 |
PointMoment-singler(Ours)+DGCNN | 91.0 |