Table 10 Performance Metrics of SignaryNet over Benchmark datasets

From: Leveraging digital acquisition and DPB based SignaryNet for localization and recognition of heritage inscription palaeography

Metrics

SIW-13 (Printed) (321 Line images)

CVSI-2015 (Scene text) (50 Word images)

Wikipedia Ancient Tamil script (41 raw images)

Training

0.9916

0.9906

0.9600

Validation

0.9880

0.9969

0.9960

Testing

0.9816

0.9780

0.9890

Precision

0.9882

0.9872

0.9935

Recall

0.9916

0.9901

0.9953

F-score

0.9900

0.9886

0.9944

SRR

0.9816

0.9780

0.9890

NPV

0.9070

0.8805

0.9200

Specificity (TNR)

0.8736

0.8500

0.9047

Sensitivity (TPR)

0.9916

0.9901

0.9953

FNR

0.0084

0.0099

0.0053

FDR

0.0118

0.0128

0.0065

FPR

0.1264

0.1500

0.0958

AUC

0.9326

0.9201

0.9500