Table 6 Performance Comparison on Oracle bone inscriptions Dataset
From: Multi-modal ancient scripts recognition via deep learning with data homogenization and augmentation
Model | Top-1 Accuracy | F1 Score | AUC | Top-5 Accuracy | ||||
|---|---|---|---|---|---|---|---|---|
Base | CA | Base | CA | Base | CA | Base | CA | |
AlexNet | 0.657 | 0.861 | 0.649 | 0.860 | 0.987 | 0.997 | 0.876 | 0.966 |
VGG19 | 0.643 | 0.904 | 0.640 | 0.904 | 0.975 | 0.999 | 0.853 | 0.978 |
ResNet50 | 0.671 | 0.900 | 0.669 | 0.900 | 0.985 | 0.999 | 0.863 | 0.980 |
ConvNext | 0.644 | 0.880 | 0.649 | 0.879 | 0.981 | 0.998 | 0.840 | 0.973 |
EfficientNet | 0.693 | 0.863 | 0.690 | 0.862 | 0.988 | 0.998 | 0.870 | 0.965 |
ShuffleNet | 0.538 | 0.902 | 0.538 | 0.901 | 0.968 | 0.999 | 0.756 | 0.978 |
ViT | 0.288 | 0.774 | 0.283 | 0.776 | 0.874 | 0.990 | 0.519 | 0.901 |
SwinTransformer | 0.421 | 0.858 | 0.414 | 0.856 | 0.945 | 0.999 | 0.662 | 0.973 |