Table 3 Ablation study on the Thangka dataset, evaluating the effectiveness of the proposed MACCA and CDSA modules

From: MACColor: multi-scale and cross-dimensional attention for thangka image colorization

Method

256 × 256

512 × 512

 

FID

SSIM

CF

ΔCF

PSNR

FID

SSIM

CF

ΔCF

PSNR

Baseline

17.7934

0.8597

48.2252

5.6100

21.7974

18.6270

0.8555

49.0850

6.9384

22.5366

MACCA replaced by CBAM

17.6924

0.8673

47.8573

1.8254

21.3842

18.5365

0.8466

48.3675

2.5282

22.5362

CDSA replaced by CoTNet

17.9582

0.8463

48.1204

1.5623

21.9608

18.5340

0.8325

49.1754

1.7203

22.2546

w/o MACCA

17.4352

0.8657

49.5783

3.4563

23.3563

18.0253

0.8634

49.1528

3.5243

22.8572

w/o CDSA

17.4537

0.8735

49.2564

3.6351

22.5463

18.4936

0.8462

50.6342

4.5486

22.6345

Full (MACCA+CDSA)

17.0173

0.8925

50.7837

2.5010

24.0659

17.9443

0.8709

51.4480

2.5523

23.8310

  1. The full model achieves the best performance across all metrics.
  2. ↑Higher is better. ↓Lower is better. Bold indicates the best result per column.