Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α deacetylation

A Correction to this article was published on 27 November 2019

This article has been updated

Abstract

Background and aims

Uncorrected obesity contributes to cardiac remodeling and contractile dysfunction although the underlying mechanism remains poorly understood. Mitochondrial aldehyde dehydrogenase (ALDH2) is a mitochondrial enzyme with some promises in a number of cardiovascular diseases. This study was designed to evaluate the impact of ALDH2 on cardiac remodeling and contractile property in high fat diet-induced obesity.

Methods

Wild-type (WT) and ALDH2 transgenic mice were fed low (10% calorie from fat) or high (45% calorie from fat) fat diet for 5 months prior to the assessment of cardiac geometry and function using echocardiography, IonOptix system, Lectin, and Masson Trichrome staining. Western blot analysis was employed to evaluate autophagy, CaM kinase II, PGC-1α, histone H3K9 methyltransferase SUV39H, and Sirt-1.

Results

Our data revealed that high fat diet intake promoted weight gain, cardiac remodeling (hypertrophy and interstitial fibrosis, p < 0.0001) and contractile dysfunction (reduced fractional shortening (p < 0.0001), cardiomyocyte function (p < 0.0001), and intracellular Ca2+ handling (p = 0.0346)), mitochondrial injury (elevated O2 levels, suppressed PGC-1α, and enhanced PGC-1α acetylation, p < 0.0001), elevated SUV39H, suppressed Sirt1, autophagy and phosphorylation of AMPK and CaM kinase II, the effects of which were negated by ALDH2 (p ≤ 0.0162). In vitro incubation of the ALDH2 activator Alda-1 rescued against palmitic acid-induced changes in cardiomyocyte function, the effect of which was nullified by the Sirt-1 inhibitor nicotinamide and the CaM kinase II inhibitor KN-93 (p < 0.0001). The SUV39H inhibitor chaetocin mimicked Alda-1-induced protection again palmitic acid (p < 0.0001). Examination in overweight human revealed an inverse correlation between diastolic cardiac function and ALDH2 gene mutation (p < 0.05).

Conclusions

Taken together, these data suggest that ALDH2 serves as an indispensable factor against cardiac anomalies in diet-induced obesity through a mechanism related to autophagy regulation and facilitation of the SUV39H-Sirt1-dependent PGC-1α deacetylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 27 November 2019

    The authors found a critical mistake in the assembly of Fig. 2; in Fig. 2A the right two images were erroneously duplicated. The authors have re-analysed all the data, checked for accuracy and provided the updated Fig. 2 here. Nothing is affected with regards to data summary and conclusion.

References

  1. Emdin CA, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317:626–34. https://doi.org/10.1001/jama.2016.21042

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang Y, Ren J. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management. Pharmacol Ther. 2016;161:52–66. https://doi.org/10.1016/j.pharmthera.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  3. DeBoer MD, Gurka MJ. Clinical utility of metabolic syndrome severity scores: considerations for practitioners. Diabetes Metab Syndr Obes. 2017;10:65–72. https://doi.org/10.2147/DMSO.S101624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lumeng JC. Infant eating behaviors and risk for overweight. JAMA. 2016;316:2036–7. https://doi.org/10.1001/jama.2016.16899

    Article  PubMed  Google Scholar 

  5. Sackner-Bernstein J, Kanter D, Kaul S. Dietary intervention for overweight and obese adults: comparison of low-carbohydrate and low-fat diets. a meta-analysis. PloS ONE. 2015;10:e0139817. https://doi.org/10.1371/journal.pone.0139817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Raza H, John A, Howarth FC. Alterations in glutathione redox metabolism, oxidative stress, and mitochondrial function in the left ventricle of elderly Zucker diabetic fatty rat heart. Int J Mol Sci. 2012;13:16241–54. https://doi.org/10.3390/ijms131216241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jia G, Aroor AR, Sowers JR. The role of mineralocorticoid receptor signaling in the cross-talk between adipose tissue and the vascular wall. Cardiovasc Res. 2017;113:1055–63. https://doi.org/10.1093/cvr/cvx097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carvajal K, et al. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress. Cell Calcium. 2014;56:408–15. https://doi.org/10.1016/j.ceca.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Ren J. Role of cardiac steatosis and lipotoxicity in obesity cardiomyopathy. Hypertension. 2011;57:148–50. https://doi.org/10.1161/HYPERTENSIONAHA.110.164178

    Article  CAS  PubMed  Google Scholar 

  10. Ozcan L, et al. I. Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metab. 2013;18:803–15. https://doi.org/10.1016/j.cmet.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  11. Mathew TS, Ferris RK, Downs RM, Kinsey ST, Baumgarner BL. Caffeine promotes autophagy in skeletal muscle cells by increasing the calcium-dependent activation of AMP-activated protein kinase. Biochem Biophys Res Commun. 2014;453:411–8. https://doi.org/10.1016/j.bbrc.2014.09.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pang JJ, Barton LA, Chen YG, Ren J. Mitochondrial aldehyde dehydrogenase in myocardial ischemia-reperfusion injury: from bench to bedside. Sheng Li Xue Bao. 2015;67:535–44.

    CAS  PubMed  Google Scholar 

  13. Ebert AD, et al. Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Sci Transl Med. 2014;6:255ra130. https://doi.org/10.1126/scitranslmed.3009027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma H, Guo R, Yu L, Zhang Y, Ren J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur Heart J. 2011;32:1025–38. https://doi.org/10.1093/eurheartj/ehq253

    Article  CAS  PubMed  Google Scholar 

  15. Hu N, Zhang Y, Nair S, Culver BW, Ren J. Contribution of ALDH2 polymorphism to alcoholism-associated hypertension. Recent Pat Endocr Metab Immune Drug Discov. 2014;8:180–5.

    Article  CAS  PubMed  Google Scholar 

  16. Ma C, et al. Associations between aldehyde dehydrogenase 2 (ALDH2) rs671 genetic polymorphisms, lifestyles and hypertension risk in Chinese Han people. Sci Rep. 2017;7:11136. https://doi.org/10.1038/s41598-017-11071-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang MY, et al. Activation of aldehyde dehydrogenase 2 slows down the progression of atherosclerosis via attenuation of ER stress and apoptosis in smooth muscle cells. Acta Pharmacol Sin. 2017. https://doi.org/10.1038/aps.2017.81

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pang J, Wang J, Zhang Y, Xu F, Chen Y. Targeting acetaldehyde dehydrogenase 2 (ALDH2) in heart failure—recent insights and perspectives. Biochim Et Biophys Acta. 2017;1863:1933–41. https://doi.org/10.1016/j.bbadis.2016.10.004

    Article  CAS  Google Scholar 

  19. Sun A, et al. Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J Am Heart Assoc. 2014;3:e000779. https://doi.org/10.1161/JAHA.113.000779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yavari A, Ashrafian H. Potentiating mitochondrial aldehyde dehydrogenase 2 to treat post-infarction heart failure. Cardiovasc Res. 2014;103:429–31. https://doi.org/10.1093/cvr/cvu175

    Article  CAS  PubMed  Google Scholar 

  21. Sun A, et al. Aldehyde dehydrogenase 2 ameliorates doxorubicin-induced myocardial dysfunction through detoxification of 4-HNE and suppression of autophagy. J Mol Cell Cardiol. 2014;71:92–104. https://doi.org/10.1016/j.yjmcc.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Ren J. ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol Ther. 2011;132:86–95. https://doi.org/10.1016/j.pharmthera.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Doser TA, et al. Transgenic overexpression of aldehyde dehydrogenase 2 rescues chronic alcohol intake-induced myocardial hypertrophy and contractile dysfunction. Circulation. 2009;119:1941–9. https://doi.org/10.1161/CIRCULATIONAHA.108.823799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, et al. Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3beta and mitochondrial function. BMC Med. 2012;10:40. https://doi.org/10.1186/1741-7015-10-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo Y, et al. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy. Biochim Et Biophys Acta. 2015;1852:319–31. https://doi.org/10.1016/j.bbadis.2014.05.017

    Article  CAS  Google Scholar 

  26. Zhang Y, et al. Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic Biol Med. 2014;71:208–20. https://doi.org/10.1016/j.freeradbiomed.2014.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, et al. Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging. Biochim Et Biophys Acta. 2017;1863:1919–32. https://doi.org/10.1016/j.bbadis.2017.03.016

    Article  CAS  Google Scholar 

  28. Wu B, et al. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1. Oncotarget. 2016;7:2175–88. https://doi.org/10.18632/oncotarget.6814

    Article  PubMed  PubMed Central  Google Scholar 

  29. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38. https://doi.org/10.1038/nrm3293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang G, et al. The histone H3K9 methyltransferase SUV39H links SIRT1 repression to myocardial infarction. Nat Commun. 2017;8:14941. https://doi.org/10.1038/ncomms14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev. 2014;94:1–34. https://doi.org/10.1152/physrev.00017.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, et al. Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension. 2012;59:680–93. https://doi.org/10.1161/HYPERTENSIONAHA.111.181867

    Article  CAS  PubMed  Google Scholar 

  33. Hu N, Zhang Y. TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-kappaB/JNK-dependent activation of autophagy. Biochim Et Biophys Acta. 2017;1863:2001–11. https://doi.org/10.1016/j.bbadis.2017.01.010

    Article  CAS  Google Scholar 

  34. Small L, Brandon AE, Turner N, Cooney GJ. Modelling insulin resistance in rodents by alterations in diet. What have “high fat” and high calorie diets revealed? Am J Physiol Endocrinol Metab. 2017; ajpendo003372017. https://doi.org/10.1152/ajpendo.00337.2017.

    Article  PubMed  Google Scholar 

  35. Aquilano K, et al. Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem. 2010;285:21590–9. https://doi.org/10.1074/jbc.M109.070169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu N, Ren J, Zhang Y. Mitochondrial aldehyde dehydrogenase obliterates insulin resistance-induced cardiac dysfunction through deacetylation of PGC-1alpha. Oncotarget. 2016;7:76398–414. https://doi.org/10.18632/oncotarget.11977

    Article  PubMed  PubMed Central  Google Scholar 

  37. Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol. 2015;309:H1375–89. https://doi.org/10.1152/ajpheart.00053.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ping Z, et al. The protective effects of salidroside from exhaustive exercise-induced heart injury by enhancing the PGC-1 alpha -NRF1/NRF2 pathway and mitochondrial respiratory function in rats. Oxid Med Cell Longev. 2015;2015:876825. https://doi.org/10.1155/2015/876825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song MY, Jung HW, Kang SY, Park YK. Atractylenolide III enhances energy metabolism by increasing the SIRT-1 and PGC-1alpha expression with AMPK phosphorylation in C2C12 mouse skeletal muscle cells. Biol Pharm Bull. 2017;40:339–44. https://doi.org/10.1248/bpb.b16-00853

    Article  CAS  PubMed  Google Scholar 

  40. Wang S, Zhu X, Xiong L, Ren J. Ablation of Akt2 prevents paraquat-induced myocardial mitochondrial injury and contractile dysfunction: Role of Nrf2. Toxicol Lett. 2017;269:1–14. https://doi.org/10.1016/j.toxlet.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  41. Roe ND, Ren J. Oxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol. 2013;304:H828–39. https://doi.org/10.1152/ajpheart.00752.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang S, Zhu X, Xiong L, Zhang Y, Ren J. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism. Toxicol Lett. 2016;257:11–22. https://doi.org/10.1016/j.toxlet.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  43. Chen CJ, Fu YC, Yu W, Wang W. SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB. Biochem Biophys Res Commun. 2013;430:798–803. https://doi.org/10.1016/j.bbrc.2012.11.066

    Article  CAS  PubMed  Google Scholar 

  44. Peng GS, Yin SJ. Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations. Hum Genom. 2009;3:121–7.

    Article  CAS  Google Scholar 

  45. Yin SJ, Peng GS. Acetaldehyde, polymorphisms and the cardiovascular system. Novartis Found Symp. 2007;285:52–63.

    Article  CAS  PubMed  Google Scholar 

  46. Nishimura FT, et al. Effects of aldehyde dehydrogenase 2 genotype on cardiovascular and endocrine responses to alcohol in young Japanese subjects. Auton Neurosci. 2002;102:60–70.

    Article  CAS  PubMed  Google Scholar 

  47. Li SJ, et al. The high-fat diet induces myocardial fibrosis in the metabolically healthy obese minipigs-The role of ER stress and oxidative stress. Clin Nutr. 2017;36:760–7. https://doi.org/10.1016/j.clnu.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  48. Li L, et al. Mitochondrial biogenesis and PGC-1alpha deacetylation by chronic treadmill exercise: differential response in cardiac and skeletal muscle. Basic Res Cardiol. 2011;106:1221–34. https://doi.org/10.1007/s00395-011-0213-9

    Article  CAS  PubMed  Google Scholar 

  49. Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol. 2009;46:201–12. https://doi.org/10.1016/j.yjmcc.2008.10.025

    Article  CAS  PubMed  Google Scholar 

  50. Patten IS, Arany Z. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab. 2012;23:90–7. https://doi.org/10.1016/j.tem.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  51. Papanicolaou KN, O’Rourke B, Foster DB. Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front Physiol. 2014;5:301. https://doi.org/10.3389/fphys.2014.00301

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dong F, Li Q, Sreejayan N, Nunn JM, Ren J. Metallothionein prevents high-fat diet-induced cardiac contractile dysfunction: role of peroxisome proliferator-activated receptor gamma co-activator 1alpha and mitochondrial biogenesis. Diabetes. 2007;56:2201–12. https://doi.org/10.2337/db06-1596

    Article  CAS  PubMed  Google Scholar 

  53. Huang CY, et al. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells. Clin Sci. 2016;130:1523–33. https://doi.org/10.1042/CS20160117

    Article  CAS  Google Scholar 

  54. Trivedi PC, et al. Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes. Biochim Et Biophys Acta. 2016;1861:1893–910. https://doi.org/10.1016/j.bbalip.2016.09.004

    Article  CAS  Google Scholar 

  55. Yang Y, et al. Autophagy in cardiac metabolic control: novel mechanisms for cardiovascular disorders. Cell Biol Int. 2016;40:944–54. https://doi.org/10.1002/cbin.10626

    Article  PubMed  Google Scholar 

  56. Tanaka K, et al. ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds. Am J Cancer Res. 2016;6:781–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo R, Xu X, Babcock SA, Zhang Y, Ren J. Aldehyde dedydrogenase-2 plays a beneficial role in ameliorating chronic alcohol-induced hepatic steatosis and inflammation through regulation of autophagy. J Hepatol. 2015;62:647–56. https://doi.org/10.1016/j.jhep.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  58. Kim JS, Yoon CS, Park DR. NAMPT regulates mitochondria biogenesis via NAD metabolism and calcium binding proteins during skeletal muscle contraction. J Exerc Nutr Biochem. 2014;18:259–66. https://doi.org/10.5717/jenb.2014.18.3.259

    Article  Google Scholar 

Download references

Acknowledgements

SW was supported by the University of Wyoming Biomedical Science PhD program.

Funding

American Diabetes Association (7-13-BS-142-BR), NSFC 81370195, NSFC81570225, NSFC81521001, and NSFC 81522004.

Author information

Authors and Affiliations

Authors

Contributions

SW, CW, ST, KLR, YZ, data collection; YZ and JR: study design, funding, and manuscript writing.

Corresponding authors

Correspondence to Yingmei Zhang or Jun Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, C., Turdi, S. et al. ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α deacetylation. Int J Obes 42, 1073–1087 (2018). https://doi.org/10.1038/s41366-018-0030-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-018-0030-4

This article is cited by

Search

Quick links