Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unravelling airborne complexities: the role of spider webs and indoor dust in assessing human exposure to indoor organic micropollutants

Abstract

Background

Indoor environments serve as critical exposure pathways for airborne micropollutants, yet traditional sampling methods often face limitations in representing dynamic air quality. Alternative, non-invasive techniques for indoor pollutant monitoring are gaining attention.

Objective

This study evaluates the use of spider webs as innovative biomonitoring tools for assessing airborne micropollutants across various indoor environments, in comparison with conventional indoor dust sampling.

Methods

Spider webs and indoor dust samples were collected from a range of indoor microenvironments, including electronic shops, textile stores, daycare centers, and décor shops. Non-target screening of micropollutants was carried out using Gas Chromatography–Mass Spectrometry (GC-MS). Quantification of targeted phthalates (Di-butyl phthalate (DBP), Di-ethyl phthalate (DEP), Di-methyl phthalate (DMP), Mono-butyl phthalate (MBP), Mono-methyl phthalate (MMP), and Mono-ethyl phthalate (MEP)) and bisphenol A (BPA) was performed using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). Structural distortions in spider silk due to pollutant exposure were monitored using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, focusing on alterations in the amide regions.

Results

Among the compounds detected, several were exclusive to either web or dust samples, while others were common to both. Esters and carboxylic acids were dominant in web-specific compounds, whereas esters and phenols were prevalent in both matrices. Dust samples recorded higher concentrations of DBP (mean: 10,434 ng/g) and BPA (mean: 2240 ng/g) than web samples (DBP mean: 2352 ng/g; BPA mean: 777 ng/g). ATR-FTIR analysis revealed significant shifts in amide I and II bands in spider silk collected from high-exposure areas, indicating distortion in silk protein structures in response to micropollutant accumulation.

Impact

  • This study highlights the novelty of using spider webs as sensitive, non-invasive bioindicators for indoor air quality. By employing advanced analytical techniques (GC-MS, LC-MS/MS, and ATR-FTIR), we demonstrate that spider webs effectively capture and reflect the presence of airborne micropollutants. Beyond their analytical relevance, spider webs offer a cost-effective, passive, and easily deployable monitoring tool, making them particularly valuable for routine air quality assessments in high-risk microenvironments such as electronics shops and plastics/decor outlets. These findings establish spider web analysis as a promising complement to conventional indoor air monitoring approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Comparison of compound distribution across dust and spider web samples.
Fig. 3
Fig. 4
Fig. 5: Characterization of molecular composition and emerging contaminants in indoor samples.

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhou X, Zhou X, Wang C, Zhou H. Environmental and human health impacts of volatile organic compounds: a perspective review. Chemosphere. 2023;313:137489.

    Article  CAS  PubMed  Google Scholar 

  3. Soni V, Singh P, Shree V, Goel V. Effects of VOCs on Human Health. In: Sharma N, Agarwal AK, Eastwood P, Gupta T, Singh AP, editors. Air Pollution and Control. Springer Singapore: Singapore; 2018. p. 119–142. https://doi.org/10.1007/978-981-10-7185-0_8.

  4. Fuentes-Ferragud E, Miralles P, López A, Ibáñez M, Piera JM, López-Labrador FX, et al. Comprehensive air quality assessment including non-targeted approaches in primary schools from Spain. Chemosphere. 2025;372:144022.

    Article  CAS  PubMed  Google Scholar 

  5. Yang J, Yao Y, Li X, He A, Chen S, Wang Y, et al. Nontarget identification of novel organophosphorus flame retardants and plasticizers in indoor air and dust from multiple microenvironments in China. Environ Sci Technol. 2024;58:7986–7997.

    Article  CAS  PubMed  Google Scholar 

  6. Hashimoto S, Takazawa Y, Ieda T, Omagari R, Nakajima D, Nakamura S, et al. Application of rapid air sampling and non-targeted analysis using thermal desorption comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry to accidental fire. Chemosphere. 2022;303:135021.

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki N, Nakaoka H, Hanazato M, Nakayama Y, Tsumura K, Takaya K, et al. Indoor air quality analysis of newly built houses. Int J Environ Res Public Health. 2019;16:4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aradhana KS, Moorchilot VS, Joo T, Aravindakumar CT, Aravind UK. Spider Webs As Passive Monitors Of Microplastics And Its Copollutants In Indoor Environments. ACS Omega 2024 https://doi.org/10.1021/acsomega.4c07373.

  9. Stojanowska A, Zeynalli F, Wróbel M, Rybak J. The use of spider webs in the monitoring of air quality—a review. Integr Environ Assess Manag. 2023;19:32–44.

    Article  PubMed  Google Scholar 

  10. Iordachescu L, Rullander G, Lykkemark J, Dalahmeh S, Vollertsen J. An integrative analysis of microplastics in spider webs and road dust in an urban environment–webbed routes and asphalt Trails. J Environ Manag. 2024;359:121064.

    Article  CAS  Google Scholar 

  11. Rutkowski R, Rybak J, Mach T, Rogula–Kozłowska W. Spider webs in monitoring of air pollution. SHS Web Conf. 2018;57:02011.

    Article  Google Scholar 

  12. Goßmann I, Süßmuth R, Scholz-Böttcher BM. Plastic in the air?!-Spider webs as spatial and temporal mirror for microplastics including tire wear particles in urban air. Sci Total Environ. 2022;832:155008.

    Article  PubMed  Google Scholar 

  13. Costa MBD, Schuab JM, Sad CMDS, Ocaris ERY, Otegui MBP, Motta DG, et al. Microplastic atmospheric pollution in an urban Southern Brazil region: What can spider webs tell us?. J Hazard Mater. 2024;477:135190.

    Article  CAS  PubMed  Google Scholar 

  14. Tahir M, Aamir H, Nadeem J. Use of spider webs as indicators of air quality assessment of Lahore City: spider web as indicators of air quality. Water Environ J. 2018;32:292–300.

  15. Taher HZ, Azeez NM, Najim SA. Monitoring of the heavy metals by using pholcidae spider webs in Basrah Province. Seybold Rep. 2023;6:1852–1859.

    Google Scholar 

  16. Xie Q, Tan L, Jia F, Jin C, Wei W, Cao Y et al. Spider webs as noninvasive indicators of biomagnification and tissue partitioning of halogenated organic contaminants in mangrove ecosystems. Environ Sci Technol 2025. https://doi.org/10.1021/acs.est.5c00313.

  17. Rutkowski R, Rybak J, Rogula-Kozłowska W, Bełcik M, Piekarska K, Jureczko I. Mutagenicity of indoor air pollutants adsorbed on spider webs. Ecotoxicol Environ Saf. 2019;171:549–557.

    Article  CAS  PubMed  Google Scholar 

  18. Meher AK, Zarouri A. Environmental applications of mass spectrometry for emerging contaminants. Molecules. 2025;30:364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manz KE, Feerick A, Braun JM, Feng Y-L, Hall A, Koelmel J, et al. Non-targeted analysis (NTA) and suspect screening analysis (SSA): a review of examining the chemical exposome. J Expo Sci Environ Epidemiol. 2023;33:524–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manz KE, Dodson RE, Liu Y, Scheidl L, Burks S, Dunn F, et al. Effects of Corsi-Rosenthal boxes on indoor air contaminants: non-targeted analysis using high resolution mass spectrometry. J Expo Sci Environ Epidemiol. 2023;33:537–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noever DA, Cronise RJ, Relwani RA. Using spider-web patterns to determine toxicity. NASA Tech Br. 1995;19:82.

  22. Berthomieu C, Hienerwadel R. Fourier transform infrared (FTIR) spectroscopy. Photosynth Res. 2009;101:157–170.

    Article  CAS  PubMed  Google Scholar 

  23. Tu M, Zheng X, Liu P, Wang S, Yan Z, Sun Q, et al. Typical organic pollutant-protein interactions studies through spectroscopy, molecular docking and crystallography: a review. Sci Total Environ. 2021;763:142959.

    Article  CAS  PubMed  Google Scholar 

  24. Kuriakose PN, Philip S. City profile: Kochi, city region– planning measures to make Kochi smart and creative. Cities. 2021;118:103307.

    Article  Google Scholar 

  25. Moorchilot VS, Arun P, Aravind UK, Aravindakumar CT. Human exposure to methyl and butyl parabens and their transformation products in settled dust collected from urban, semi-urban, rural, and tribal settlements in a tropical environment. Environ Res. 2024;242:117805.

    Article  CAS  PubMed  Google Scholar 

  26. He C-T, Zheng X-B, Yan X, Zheng J, Wang M-H, Tan X, et al. Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: spatial characteristics and implications for human exposure. Ecotoxicol Environ Saf. 2017;140:109–115.

    Article  CAS  PubMed  Google Scholar 

  27. Melymuk L, Demirtepe H. Jílková SR indoor dust and associated chemical exposures. Curr Opin Environ Sci Health. 2020;15:1–6.

    Article  Google Scholar 

  28. Champion de Crespigny FE, Herberstein ME, Elgar MA. Food caching in orb-web spiders (Araneae: Araneoidea). Naturwissenschaften. 2001;88:42–45.

    Article  CAS  PubMed  Google Scholar 

  29. Rybak J, Olejniczak T. Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. Environ Sci Pollut Res. 2014;21:2313–2324.

    Article  CAS  Google Scholar 

  30. Shah NH, Noe MR, Agnew-Heard KA, Pithawalla YB, Gardner WP, Chakraborty S, et al. Non-targeted analysis using gas chromatography-mass spectrometry for evaluation of the chemical composition of E-vapor products. Front Chem. 2021;9:2021.

    Article  Google Scholar 

  31. Rybak J, Rogula-Kozłowska W, Jureczko I, Rutkowski R. Monitoring of indoor polycyclic aromatic hydrocarbons using spider webs. Chemosphere. 2019;218:758–766.

    Article  CAS  PubMed  Google Scholar 

  32. Lucattini L, Poma G, Covaci A, de Boer J, Lamoree MH, Leonards PEG. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere. 2018;201:466–482.

    Article  CAS  PubMed  Google Scholar 

  33. You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor gaseous organic compounds and human chemical exposure: insights from real-time measurements. Environ Int. 2022;170:107611.

    Article  CAS  PubMed  Google Scholar 

  34. Weschler CJ, Nazaroff WW. SVOC partitioning between the gas phase and settled dust indoors. Atmos Environ. 2010;44:3609–3620.

    Article  CAS  Google Scholar 

  35. Vasiljevic T, Harner T. Bisphenol A and its analogues in outdoor and indoor air: properties, sources and global levels. Sci Total Environ. 2021;789:148013.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine-disrupting chemicals in indoor dust: a review of temporal and spatial trends, and human exposure. Sci Total Environ. 2023;874:162374.

    Article  CAS  PubMed  Google Scholar 

  37. Rybak J, Spówka I, Zwozdziak A, Fortuna M, Trzepla-Nabaglo K. Evaluation of the usefulness of spider webs as an air quality monitoring tool for heavy metals. Ecol Chem Eng. 2015;22:389.

    CAS  Google Scholar 

  38. Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. Environ Res. 2022;207:112658.

    Article  CAS  PubMed  Google Scholar 

  39. Ma W-L, Subedi B, Kannan K. The occurrence of bisphenol A, phthalates, parabens and other environmental phenolic compounds in house dust: a review. Curr Org Chem. 2014;18:2182–2199.

    Article  CAS  Google Scholar 

  40. Levasseur JL, Hammel SC, Hoffman K, Phillips AL, Zhang S, Ye X, et al. Young children’s exposure to phenols in the home: associations between house dust, hand wipes, silicone wristbands, and urinary biomarkers. Environ Int. 2021;147:106317.

    Article  CAS  PubMed  Google Scholar 

  41. Chen L-B, Gao C-J, Zhang Y, Shen H-Y, Lu X-Y, Huang C, et al. Phthalate Acid Esters (PAEs) in indoor dust from decoration material stores: occurrence, sources, and health risks. Toxics. 2024;12:505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Liu B, Yu Y, Dong W. A systematic review of global distribution, sources and exposure risk of phthalate esters (PAEs) in indoor dust. J Hazard Mater. 2024;471:134423.

    Article  CAS  PubMed  Google Scholar 

  43. Deng M, Han X, Ge J, Liang X, Du B, Li J, et al. Prevalence of phthalate alternatives and monoesters alongside traditional phthalates in indoor dust from a typical e-waste recycling area: source elucidation and co-exposure risk. J Hazard Mater. 2021;413:125322.

    Article  CAS  PubMed  Google Scholar 

  44. Lin Q, Zheng N, An Q, Xiu Z, Li X, Zhu H, et al. Phthalate monoesters accumulation in residential indoor dust and influence factors. Sci Total Environ. 2024;948:174900.

    Article  CAS  PubMed  Google Scholar 

  45. Moorchilot VS, Louis H, Haridas A, Praveena P, Arya SB, Nair AS, et al. Bisphenols in indoor dust: a comprehensive review of global distribution, exposure risks, transformation, and biomonitoring. Chemosphere. 2025;370:143798.

    Article  CAS  PubMed  Google Scholar 

  46. Dueñas-Moreno J, Mora A, Kumar M, Meng X-Z, Mahlknecht J. Worldwide risk assessment of phthalates and bisphenol A in humans: The need for updating guidelines. Environ Int. 2023;181:108294.

    Article  PubMed  Google Scholar 

  47. Strømmen K, Lyche JL, Moltu SJ, Müller MHB, Blakstad EW, Brække K, et al. Estimated daily intake of phthalates, parabens, and bisphenol A in hospitalised very low birth weight infants. Chemosphere. 2022;309:136687.

    Article  PubMed  Google Scholar 

  48. Mariana M, Castelo-Branco M, Soares AM, Cairrao E. Phthalates’ exposure leads to an increasing concern on cardiovascular health. J Hazard Mater. 2023;457:131680.

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Peng C, Shi Y, Tan H, Tang S, Chen D. Beyond phthalate diesters: existence of phthalate monoesters in South China house dust and implications for human exposure. Environ Sci Technol. 2019;53:11675–11683.

    Article  CAS  PubMed  Google Scholar 

  50. Moorchilot VS, Aradhana KS, Varsha M, Cyrus MK, Aravindakumar CT, Aravind UK. ATR-FTIR and LC-Q-ToF-MS analysis of indoor dust from different micro-environments located in a tropical metropolitan area. Sci Total Environ. 2021;783:147066.

    Article  Google Scholar 

  51. Frankowski R, Zgoła-Grześkowiak A, Grześkowiak T, Sójka K. The presence of bisphenol A in thermal paper in the face of changing European regulations—a comparative global research. Environ Pollut. 2020;265:114879.

    Article  CAS  PubMed  Google Scholar 

  52. Li P, Gan Z, Li Z, Wang B, Sun W, Su S, et al. Occurrence and exposure evaluation of bisphenol A and its analogues in indoor and outdoor dust from China. Sci Total Environ. 2024;920:170833.

    Article  CAS  PubMed  Google Scholar 

  53. Lioy PJ, Freeman NCG, Millette JR. Dust: a metric for use in residential and building exposure assessment and source characterization. Environ Health Perspect. 2002;110:969–983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hernandez G, Wallis SL, Graves I, Narain S, Birchmore R, Berry T-A. The effect of ventilation on volatile organic compounds produced by new furnishings in residential buildings. Atmos Environ X. 2020;6:100069.

    CAS  Google Scholar 

  55. Zhu Y, Tang Z, He Y, Wang F, Lyu Y. Occurrence of methylsiloxanes in indoor store dust in China and potential human exposure. Environ Res. 2023;218:114969.

    Article  CAS  PubMed  Google Scholar 

  56. Waiyarat S, Boontanon SK, Boontanon N, Harrad S, Drage DS, Abdallah MA-E, et al. Concentrations of tetrabromobisphenol-A and hexabromocyclododecane in Thai child daycare centre dust and the exposure risk for young children. Emerg Contam. 2023;9:100229.

    Article  CAS  Google Scholar 

  57. Sly PD, Trottier BA, Bulka CM, Cormier SA, Fobil J, Fry RC, et al. The interplay between environmental exposures and COVID-19 risks in the health of children. Environ Health. 2021;20:1–10.

    Article  Google Scholar 

  58. Sadrizadeh S, Yao R, Yuan F, Awbi H, Bahnfleth W, Bi Y, et al. Indoor air quality and health in schools: a critical review for developing the roadmap for the future school environment. J Build Eng. 2022;57:104908.

    Article  Google Scholar 

  59. Lee J, Kim H-B, Jung H-J, Chung M, Park SE, Lee K-H, et al. Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview. Clin Exp Pediatr. 2024;67:589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haq M, Sampath V, Sheffield P, Jackson RJ, Nadeau KC. Advocating for planetary health is an essential part of advocating for children’s health. Pediatr Res. 2024;96:1494–1502.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rajkumar DS, Murugan G, Padmanaban R. Unraveling the interaction of bisphenol A with collagen and its effect on conformational and thermal stability. Biophys Chem. 2023;298:107026.

    Article  CAS  PubMed  Google Scholar 

  62. Patnana DP, Kanikaram SP, Kumar P, Cheerala VSK, Sivaramakrishnan V, Tripathi P, et al. Simultaneous determination of polycyclic aromatic hydrocarbons, their derivatives, and phthalic acid esters bound to ambient PM2.5 during pre-summer season in Bengaluru, India, and potential effect on protein aggregation diseases. Environ Sci Pollut Res. 2025. https://doi.org/10.1007/s11356-025-36035-w.

  63. BP4NTA. NTA Study Reporting Tool (PDF). In: figshare, 2024. https://doi.org/10.6084/m9.figshare.19763482.

Download references

Acknowledgements

The authors acknowledge the partial financial support from the SPARC project (MHRD), New Delhi, and RUSA 2.0 CUSAT. Inter University Instrumentation Centre (IUIC), and Sophisticated Analytical Instrumentation Facility (SAIF), Mahatma Gandhi University, Kottayam, for instrumental support. VSM is thankful for the UGC-SRF fellowship. The NTA Study Reporting Tool (SRT) was used during peer review to document and improve the reporting and transparency of this study (10.1021/acs.analchem.1c02621; 10.6084/m9.figshare.19763503 [Excel]) [63]. The authors are also thankful to the technical support provided by Shiny Thomas, Pooja S Kumar, and Naveen S. Lal during the target and non-target analysis.

Author information

Authors and Affiliations

Authors

Contributions

VSM and KSA both contributed to the conceptualization, methodology, formal analysis, and writing of the original draft. CTA contributed to drafting and reviewing the manuscript, and UKA contributed to the conceptualization, drafting, and reviewing.

Corresponding author

Correspondence to Usha K. Aravind.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable. This study did not involve human participants, human data, human biological material, or live vertebrate animals. Only environmental samples (dust/spider webs) were collected and analysed, which do not fall under institutional or national requirements for ethical review.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moorchilot, V.S., Aradhana, K.S., Aravindakumar, C.T. et al. Unravelling airborne complexities: the role of spider webs and indoor dust in assessing human exposure to indoor organic micropollutants. J Expo Sci Environ Epidemiol (2026). https://doi.org/10.1038/s41370-026-00839-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41370-026-00839-w

Keywords

Search

Quick links