Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduced systemic microvascular function in patients with resistant hypertension and microalbuminuria: an observational study

Abstract

Resistant hypertension (RH) may be associated with microalbuminuria (MAU), a marker of cardiovascular risk and target organ damage, and both may be related to microvascular damage. Laser speckle contrast imaging (LSCI) is an innovative approach for noninvasively evaluating systemic microvascular endothelial function useful in the context of RH with or without MAU. Microalbuminuria was defined as a urine albumin-to-creatinine ratio between 30 and 300 mg/g. Microvascular reactivity was evaluated using LSCI to perform noninvasive measurements of cutaneous microvascular perfusion changes. Pharmacological (acetylcholine [ACh], or sodium nitroprusside [SNP]) and physiological (postocclusive reactive hyperemia [PORH]) stimuli were used to evaluate vasodilatory responses. Thirty-two patients with RH and a normal urine albumin-to-creatinine ratio (RH group) and 32 patients with RH and microalbuminuria (RH + MAU) were evaluated. Compared with patients without MAU, patients with RH + MAU showed reduced endothelial-dependent systemic microvascular reactivity, as demonstrated by an attenuation of microvascular vasodilation induced by PORH. On the other hand, ACh-induced vasodilation did not differ between groups. The results also revealed reduced endothelial-independent (SNP-induced) microvascular reactivity in hypertensive patients with MAU compared with patients without MAU. In this study, there was evidence of endothelial dysfunction associated with impaired microvascular smooth muscle function in patients with RH + MAU. This may suggest that patients with RH need more intensive therapeutic strategies for the control of blood pressure to avoid further vascular damage and the resulting consequences.

The study was registered at ClinicalTrials.gov (https://register.clinicaltrials.gov) under protocol # NCT05464849, initial release 12/07/2022.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Systemic endothelial-dependent microvascular effects of postocclusive reactive hyperemia.
Fig. 2: Systemic endothelial-dependent microvascular effects induced by acetylcholine.
Fig. 3: Systemic endothelial-independent microvascular effects induced by sodium nitroprusside.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and control of hypertension: JACC health promotion series. J Am Coll Cardiol. 2018;72:1278–93.

    PubMed  PubMed Central  Google Scholar 

  2. Carey RM, Wright JT Jr, Taler SJ, Whelton PK. Guideline-driven management of hypertension: an evidence-based update. Circ Res. 2021;128:827–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Farkas K, Kolossvary E, Jarai Z, Nemcsik J, Farsang C. Non-invasive assessment of microvascular endothelial function by laser Doppler flowmetry in patients with essential hypertension. Atherosclerosis. 2004;173:97–102.

    CAS  PubMed  Google Scholar 

  4. Farkas K, Nemcsik J, Kolossvary E, Jarai Z, Nadory E, Farsang C, et al. Impairment of skin microvascular reactivity in hypertension and uraemia. Nephrol Dial Transplant. 2005;20:1821–7.

    PubMed  Google Scholar 

  5. Cupisti A, Rossi M, Placidi S, Fabbri A, Morelli E, Vagheggini G, et al. Responses of the skin microcirculation to acetylcholine in patients with essential hypertension and in normotensive patients with chronic renal failure. Nephron. 2000;85:114–9.

    CAS  PubMed  Google Scholar 

  6. Kaiser SE, Sanjuliani AF, Estato V, Gomes MB, Tibirica E. Antihypertensive treatment improves microvascular rarefaction and reactivity in low-risk hypertensive individuals. Microcirculation. 2013;20:703–16.

    CAS  PubMed  Google Scholar 

  7. Yannoutsos A, Levy BI, Safar ME, Slama G, Blacher J. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction. J Hypertens. 2014;32:216–24.

    CAS  PubMed  Google Scholar 

  8. Chan RJ, Helmeczi W, Hiremath SS. Revisiting resistant hypertension: a comprehensive review. Intern Med J. 2023;53:1739–51.

    PubMed  Google Scholar 

  9. Filippone EJ, Naccarelli GV, Foy AJ. Controversies in Hypertension V: resistant and refractory hypertension. Am J Med. 2024;137:12–22.

    PubMed  Google Scholar 

  10. O’Hare AM, Hailpern SM, Pavkov ME, Rios-Burrows N, Gupta I, Maynard C, et al. Prognostic implications of the urinary albumin to creatinine ratio in veterans of different ages with diabetes. Arch Intern Med. 2010;170:930–6.

    PubMed  Google Scholar 

  11. Chang DR, Yeh HC, Ting IW, Lin CY, Huang HC, Chiang HY, et al. The ratio and difference of urine protein-to-creatinine ratio and albumin-to-creatinine ratio facilitate risk prediction of all-cause mortality. Sci Rep. 2021;11:7851.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Forbes A, Gallagher, H. Chronic kidney disease in adults: assessment and management. Clin Med. 2020;20:128–32.

  13. Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2011;6:2364–73.

    PubMed  PubMed Central  Google Scholar 

  14. Hong Z, Jiang Y, Liu P, Zhang L. Association of microalbuminuria and adverse outcomes in hypertensive patients: a meta-analysis. Int Urol Nephrol. 2021;53:2311–9.

    CAS  PubMed  Google Scholar 

  15. Oliveras A, Armario P, Sierra C, Arroyo JA, Hernandez-del-Rey R, Vazquez S, et al. Urinary albumin excretion at follow-up predicts cardiovascular outcomes in subjects with resistant hypertension. Am J Hypertens. 2013;26:1148–54.

    PubMed  Google Scholar 

  16. Xia F, Liu G, Shi Y, Zhang Y. Impact of microalbuminuria on incident coronary heart disease, cardiovascular and all-cause mortality: a meta-analysis of prospective studies. Int J Clin Exp Med. 2015;8:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cordovil I, Huguenin G, Rosa G, Bello A, Kohler O, de Moraes R, et al. Evaluation of systemic microvascular endothelial function using laser speckle contrast imaging. Microvasc Res. 2012;83:376–9.

    PubMed  Google Scholar 

  18. Roustit M, Millet C, Blaise S, Dufournet B, Cracowski JL. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc Res. 2010;80:505–11.

    CAS  PubMed  Google Scholar 

  19. Souza EG, De Lorenzo A, Huguenin G, Oliveira GM, Tibirica E. Impairment of systemic microvascular endothelial and smooth muscle function in individuals with early-onset coronary artery disease: studies with laser speckle contrast imaging. Coron Artery Dis. 2014;25:23–8.

    PubMed  Google Scholar 

  20. Stevens PE, Levin A. Kidney disease: improving global outcomes chronic kidney disease guideline development Work Group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825–30.

    PubMed  Google Scholar 

  21. Toto RD. Microalbuminuria: definition, detection, and clinical significance. J Clin Hypertens. 2004;6:2–7.

    CAS  Google Scholar 

  22. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    PubMed  PubMed Central  Google Scholar 

  23. Roustit M, Cracowski JL. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol Sci. 2013;34:373–84.

    CAS  PubMed  Google Scholar 

  24. Escobar S, Pecanha D, Duque M, Duque A, Crahim V, De Lorenzo A, et al. Evaluation of systemic endothelial-dependent and endothelial-independent microvascular reactivity in metabolically healthy obesity: an observational study. Microvasc Res. 2023;148:104553.

    CAS  PubMed  Google Scholar 

  25. Cracowski JL, Roustit M. Current methods to assess human cutaneous blood flow: an updated focus on laser-based-techniques. Microcirculation. 2016;23:337–44.

    PubMed  Google Scholar 

  26. Cracowski JL, Minson CT, Salvat-Melis M, Halliwill JR. Methodological issues in the assessment of skin microvascular endothelial function in humans. Trends Pharmacol Sci. 2006;27:503–8.

    CAS  PubMed  Google Scholar 

  27. Mahé G, Humeau-Heurtier A, Durand S, Leftheriotis G, Abraham P. Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circ Cardiovasc Imaging. 2012;5:155–63.

    PubMed  Google Scholar 

  28. Yvonne-Tee GB, Rasool AH, Halim AS, Wong AR, Rahman AR. Method optimization on the use of postocclusive hyperemia model to assess microvascular function. Clin Hemorheol Microcirc. 2008;38:119–33.

    CAS  PubMed  Google Scholar 

  29. Verri V, Brandão AA, Tibirica E. Penile microvascular endothelial function in hypertensive patients: effects of acute type 5 phosphodiesterase inhibition. Braz J Med Biol Res. 2018;51:e6601.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Amann K, Wanner C, Ritz E. Cross-talk between the kidney and the cardiovascular system. J Am Soc Nephrol. 2006;17:2112–9.

    CAS  PubMed  Google Scholar 

  31. Cerasola G, Cottone S, Mule G, Nardi E, Mangano MT, Andronico G, et al. Microalbuminuria, renal dysfunction and cardiovascular complication in essential hypertension. J Hypertens. 1996;14:915–20.

    CAS  PubMed  Google Scholar 

  32. Pontremoli R, Leoncini G, Ravera M, Viazzi F, Vettoretti S, Ratto E, et al. Microalbuminuria, cardiovascular, and renal risk in primary hypertension. J Am Soc Nephrol. 2002;13:S169–72.

    CAS  PubMed  Google Scholar 

  33. Sierra C, de la Sierra A. Early detection and management of the high-risk patient with elevated blood pressure. Vasc Health Risk Manag. 2008;4:289–96.

    PubMed  PubMed Central  Google Scholar 

  34. Pedrinelli R, Dell’Omo G, Penno G, Mariani M. Non-diabetic microalbuminuria, endothelial dysfunction and cardiovascular disease. Vasc Med. 2001;6:257–64.

    CAS  PubMed  Google Scholar 

  35. Ochodnicky P, Henning RH, van Dokkum RP, de Zeeuw D. Microalbuminuria and endothelial dysfunction: emerging targets for primary prevention of end-organ damage. J Cardiovasc Pharmacol. 2006;47:S151–62.

    CAS  PubMed  Google Scholar 

  36. Weir MR. Microalbuminuria and cardiovascular disease. Clin J Am Soc Nephrol. 2007;2:581–90.

    PubMed  Google Scholar 

  37. Triantafyllou A, Anyfanti P, Zabulis X, Gavriilaki E, Karamaounas P, Gkaliagkousi E, et al. Accumulation of microvascular target organ damage in newly diagnosed hypertensive patients. J Am Soc Hypertens. 2014;8:542–9.

    CAS  PubMed  Google Scholar 

  38. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307:652–9.

    CAS  PubMed  Google Scholar 

  39. Ayerden Ebinc F, Haksun E, Ulver DB, Koc E, Erten Y, Reis Altok K, et al. The relationship between vascular endothelial growth factor (VEGF) and microalbuminuria in patients with essential hypertension. Intern Med. 2008;47:1511–6.

    PubMed  Google Scholar 

  40. Taddei S, Virdis A, Mattei P, Ghiadoni L, Sudano I, Arrighi P, et al. Lack of correlation between microalbuminuria and endothelial function in essential hypertensive patients. J Hypertens. 1995;13:1003–8.

    CAS  PubMed  Google Scholar 

  41. Lorenzo S, Minson CT.Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nerves.J Physiol.2007;585:295–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Durand S, Tartas M, Bouye P, Koitka A, Saumet JL, Abraham P. Prostaglandins participate in the late phase of the vascular response to acetylcholine iontophoresis in humans. J Physiol. 2004;561:811–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Holowatz LA, Thompson CS, Minson CT, Kenney WL. Mechanisms of acetylcholine-mediated vasodilatation in young and aged human skin. J Physiol. 2005;563:965–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Noon JP, Walker BR, Hand MF, Webb DJ. Studies with iontophoretic administration of drugs to human dermal vessels in vivo: cholinergic vasodilatation is mediated by dilator prostanoids rather than nitric oxide. Br J Clin Pharmacol. 1998;45:545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Edwards JM, McCarthy CG, Wenceslau CF. The obligatory role of the acetylcholine-induced endothelium-dependent contraction in hypertension: can arachidonic acid resolve this inflammation? Curr Pharm Des. 2020;26:3723–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pathak SR, Bhattarai N, Baskota D, Koju RP, Humagain S. Prevalence of microalbuminuria in patients of essential hypertension and its correlation with left ventricular hypertrophy and carotid artery intima‑media thickness. Kathmandu Univ Med J. 2022;20:417–21.

    Google Scholar 

  47. Rodondi N, Yerly P, Gabriel A, Riesen WF, Burnier M, Paccaud F, et al. Microalbuminuria, but not cystatin C, is associated with carotid atherosclerosis in middle-aged adults. Nephrol Dial Transplant. 2007;22:1107–14.

    CAS  PubMed  Google Scholar 

  48. Geraci G, Mule G, Costanza G, Mogavero M, Geraci C, Cottone S. Relationship between carotid atherosclerosis and pulse pressure with renal hemodynamics in hypertensive patients. Am J Hypertens. 2016;29:519–27.

    PubMed  Google Scholar 

  49. Jorgensen L, Jenssen T, Johnsen SH, Mathiesen EB, Heuch I, Joakimsen O, et al. Albuminuria as risk factor for initiation and progression of carotid atherosclerosis in non-diabetic persons: the Tromso Study. Eur Heart J. 2007;28:363–9.

    PubMed  Google Scholar 

  50. Agabiti-Rosei E, Rizzoni D. Microvascular structure as a prognostically relevant endpoint. J Hypertens. 2017;35:914–21.

    CAS  PubMed  Google Scholar 

  51. Rizzoni D, Agabiti-Rosei C, De Ciuceis C. State of the art review: vascular remodeling in hypertension. Am J Hypertens. 2023;36:1–13.

    CAS  PubMed  Google Scholar 

  52. Rizzoni D, Agabiti-Rosei C, Boari GEM, Muiesan ML, De Ciuceis C. Microcirculation in hypertension: a therapeutic target to prevent cardiovascular disease? J Clin Med. 2023;12:4892.

  53. Martinez-Lemus LA. The dynamic structure of arterioles. Basic Clin Pharmacol Toxicol. 2012;110:5–11.

    CAS  PubMed  Google Scholar 

  54. Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens. 2004;17:1192–200.

    CAS  PubMed  Google Scholar 

  55. Rizzoni D, Agabiti-Rosei C, Agabiti-Rosei E. Hemodynamic consequences of changes in microvascular structure. Am J Hypertens. 2017;30:939–46.

    CAS  PubMed  Google Scholar 

  56. Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118:968–76.

    PubMed  Google Scholar 

  57. Coresh J, Byrd-Holt D, Astor BC, Briggs JP, Eggers PW, Lacher DA, et al. Chronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000. J Am Soc Nephrol. 2005;16:180–8.

    PubMed  Google Scholar 

  58. Delanaye P, Cavalier E, Pottel H, Stehle T. New and old GFR equations: a European perspective. Clin Kidney J. 2023;16:1375–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pedrinelli R, Giampietro O, Carmassi F, Melillo E, Dell’Omo G, Catapano G, et al. Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet. 1994;344:14–8.

    CAS  PubMed  Google Scholar 

  60. Redon J, Liao Y, Lozano JV, Miralles A, Baldo E, Cooper RS. Factors related to the presence of microalbuminuria in essential hypertension. Am J Hypertens. 1994;7:801–7.

    CAS  PubMed  Google Scholar 

  61. Bianchi S, Bigazzi R, Valtriani C, Chiapponi I, Sgherri G, Baldari G, et al. Elevated serum insulin levels in patients with essential hypertension and microalbuminuria. Hypertension. 1994;23:681–7.

    CAS  PubMed  Google Scholar 

  62. Feihl F, Liaudet L, Waeber B. The macrocirculation and microcirculation of hypertension. Curr Hypertens Rep. 2009;11:182–9.

    PubMed  Google Scholar 

  63. Laurent S, Agabiti-Rosei C, Bruno RM, Rizzoni D. Microcirculation and macrocirculation in hypertension: a dangerous cross-link? Hypertension. 2022;79:479–90.

    CAS  PubMed  Google Scholar 

  64. Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA. The role of nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients. Circulation. 1993;88:2541–7.

    CAS  PubMed  Google Scholar 

  65. Waclawovsky G, Pedralli ML, Eibel B, Schaun MI, Lehnen AM. Effects of different types of exercise training on endothelial function in prehypertensive and hypertensive individuals: a systematic review. Arq Bras Cardiol. 2021;116:938–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Brianezi L, Ornelas E, Gehrke FS, Fonseca FLA, Alves B, Sousa LVA, et al. Effects of physical training on the myocardium of Oxariectomized LDLr Knockout Mice: MMP 2/9, Collagen I/III, Inflammation and Oxidative Stress. Arq Bras Cardiol. 2020;114:100–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Torres-Pena JD, Rangel-Zuniga OA, Alcala-Diaz JF, Lopez-Miranda J, Delgado-Lista J. Mediterranean diet and endothelial function: a review of its effects at different vascular bed levels. Nutrients. 2020;12:2212.

Download references

Acknowledgements

The authors would like to thank Marcio Marinho Gonzalez for his excellent technical assistance.

Funding

This investigation was supported by grants from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, E.T. grant #311680/2021-6) and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), E.T. grant #E-26/200.976/2022.

Author information

Authors and Affiliations

Authors

Contributions

ET, VC, ADL, and VV contributed to the conception and design of the study, and to the analysis and interpretation of data; ET, VC, ADL, and VV were also involved in the drafting of the manuscript, and literature review. All authors have given final approval of the version to be published and are publicly responsible for its content.

Corresponding author

Correspondence to Eduardo Tibirica.

Ethics declarations

Competing interests

The authors declare no competing interest.

Ethical approval

The present study was performed in accordance with the Helsinki Declaration of 1975, revised in 2000, and was approved by the Institutional Review Board (IRB) of the National Institute of Cardiology, Rio de Janeiro, Brazil, under protocol # CAAE 53946021.8.0000.5272. Once deemed eligible to participate in this study, all subjects read and signed an informed consent document approved by the IRB. The study was registered at ClinicalTrials.gov (https://register.clinicaltrials.gov) under protocol # NCT05464849, initial release 12/07/2022.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crahim, V., Verri, V., De Lorenzo, A. et al. Reduced systemic microvascular function in patients with resistant hypertension and microalbuminuria: an observational study. J Hum Hypertens 38, 806–813 (2024). https://doi.org/10.1038/s41371-024-00958-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41371-024-00958-7

Search

Quick links