Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunomodulatory effect of dasatinib plus blinatumomab versus ponatinib plus blinatumomab in newly diagnosed Ph+ acute lymphoblastic leukemia

Abstract

In Ph+ acute lymphoblastic leukemia, frontline dasatinib plus blinatumomab (dasa+blina) is associated with long-term survival rates of 75–80%. The phase III GIMEMA ALL2820 trial has explored ponatinib with blinatumomab (pona+blina). In the present study, the immune modulation induced by dasa+blina and pona+blina was investigated. Immune cells were analyzed at the end of induction (T0) and after 2, 4 and 5 blinatumomab cycles (T2, T4, T5). Among 153 patients (43 dasa+blina, 110 pona+blina), the dasa+blina combination induced a significantly greater lymphocyte increase at T4 and T5 compared to pona+blina. The Treg counts decreased only in the dasa+blina treated patients. NK and NK-T cells increased significantly in the dasa+blina group, at all timepoints. Complete molecular responders (CMR) after dasatinib induction had significantly higher lymphocytes, T and NK cells compared to non-CMR patients. Bone marrow analyses showed higher activation (CD25, CD69) and lower exhaustion (PD1, TIM3) markers on NK and NK-T cells in dasa+blina treated patients. Dasa+blina patients exhibited a significantly enhanced NK cell capacity compared to ponatinib treated patients. Patients remaining on dasatinib maintained elevated NK cells with a more mature phenotype, suggesting a durable effect. These results highlight the greater dasa+blina immune activation, supporting a potential synergistic effect of the drug combination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune-cell subset kinetics over time in the dasa+blina and pona+blina cohorts.
Fig. 2: Evaluation of immune cell subsets according to the CMR status at T0.
Fig. 3: Immune-cell subset dynamics in CMR vs no-CMR patients across the dasa+blina and pona+blina cohorts.
Fig. 4: T/NK-cell activation and exhaustion markers in the bone marrow.
Fig. 5: Dynamics of bone marrow NK cell subsets and inhibitory/exhaustion markers from T0 to T2 in the dasa+blina and pona+blina cohorts.
Fig. 6: Peripheral blood NK-cell maturation markers and subset distribution in long-term follow-up patients and HDs.
Fig. 7: Granzyme B production by NK cells in long-term follow-up patients and HDs.

Similar content being viewed by others

Data availability

Original data are available in response to e-mail requests to the corresponding author. Data on the peripheral blood immune cell monitoring of the dasa-blina cohort have been in part reported in Foà R et al. [8] and Puzzolo MC et al. [11].

References

  1. Foà R, Chiaretti S. Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2022;386:2399–411.

    Article  PubMed  Google Scholar 

  2. Vignetti M, Fazi P, Cimino G, Martinelli G, Di Raimondo F, Ferrara F, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007;109:3676–8.

    Article  CAS  PubMed  Google Scholar 

  3. Foà R, Vitale A, Vignetti M, Meloni G, Guarini A, De Propris MS, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–8.

    Article  PubMed  Google Scholar 

  4. Chiaretti S, Vitale A, Vignetti M, Piciocchi A, Fazi P, Elia L, et al. A sequential approach with imatinib, chemotherapy and transplant for adult Ph+ acute lymphoblastic leukemia: final results of the GIMEMA LAL 0904 study. Haematologica. 2016;101:1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiaretti S, Ansuinelli M, Vitale A, Elia L, Matarazzo M, Piciocchi A, et al. A multicenter total therapy strategy for de novo adult Philadelphia chromosome positive acute lymphoblastic leukemia patients: final results of the GIMEMA LAL1509 protocol. Haematologica. 2021;106:1828–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinelli G, Papayannidis C, Piciocchi A, Robustelli V, Soverini S, Terragna C, et al. INCB84344-201: Ponatinib and steroids in frontline therapy for unfit patients with Ph+ acute lymphoblastic leukemia. Blood Adv. 2022;6:1742–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Foà R, Bassan R, Vitale A, Elia L, Piciocchi A, Puzzolo MC, et al. Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults. N Engl J Med. 2020;383:1613–23.

    Article  PubMed  Google Scholar 

  8. Foà R, Bassan R, Elia L, Piciocchi A, Soddu S, Messina M, et al. Long-term results of the dasatinib-blinatumomab protocol for adult philadelphia-positive ALL. J Clin Oncol. 2024;42:881–5.

    Article  PubMed  Google Scholar 

  9. Chiaretti S, Foà R. How I treat adult Ph+ ALL. Blood. 2025;145:11–9.

    Article  CAS  PubMed  Google Scholar 

  10. Foà R. Ph-positive acute lymphoblastic leukemia-25 years of progress. N Engl J Med. 2025;392:1941–52.

    Article  PubMed  Google Scholar 

  11. Puzzolo MC, Radice G, Peragine N, de Propris MS, Mariglia P, Vignetti M, et al. Host immune system modulation in Ph+ acute lymphoblastic leukemia patients treated with dasatinib and blinatumomab. Blood. 2021;138:2290–3.

    Article  CAS  PubMed  Google Scholar 

  12. Wan YY. Regulatory T cells: immune suppression and beyond. Cell Mol Immunol. 2010;7:204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dwarakanath BS, Farooque A, Gupta S. Targeting regulatory T cells for improving cancer therapy: Challenges and prospects. Cancer Rep. 2018;1:e21105.

    Google Scholar 

  14. Chiaretti S, Di Trani M, Skert C, Elia L, Almici G, Della Starza I, et al. First results of the phase III GIMEMA ALL2820 trial comparing ponatinib plus blinatumomab to imatinib and chemotherapy for newly diagnosed adult Ph+ acute lymphoblastic leukemia patients. Blood. 2025;146:439.

    Article  Google Scholar 

  15. Elia L, Mancini M, Moleti L, Meloni G, Buffolino S, Krampera M, et al. A multiplex reverse transcriptase-polymerase chain reaction strategy for the diagnostic molecular screening of chimeric genes: a clinical evaluation on 170 patients with acute lymphoblastic leukemia. Haematologica. 2003;88:275–9.

    CAS  PubMed  Google Scholar 

  16. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007;21:604–11.

    Article  PubMed  Google Scholar 

  17. Pfeifer H, Cazzaniga G, van der Velden VHJ, Cayuela JM, Schäfer B, Spinelli O, et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia. 2019;33:1910–22.

    Article  CAS  PubMed  Google Scholar 

  18. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22:633–40.

    Article  CAS  PubMed  Google Scholar 

  19. Kantarjian H, Short NJ, Haddad FG, Jain N, Huang X, Montalban-Bravo G, et al. Results of the simultaneous combination of ponatinib and blinatumomab in Philadelphia chromosome-positive ALL. J Clin Oncol. 2024;42:4246–51.

    Article  CAS  PubMed  Google Scholar 

  20. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.

    Article  CAS  PubMed  Google Scholar 

  21. Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31:2181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F, et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23:1398–405.

    Article  CAS  PubMed  Google Scholar 

  23. Schiffer CA, Cortes JE, Hochhaus A, Saglio G, le Coutre P, Porkka K, et al. Lymphocytosis after treatment with dasatinib in chronic myeloid leukemia: Effects on response and toxicity. Cancer. 2016;122:1398–407.

    Article  CAS  PubMed  Google Scholar 

  24. Lee SJ, Jung CW, Kim DY, Lee KH, Sohn SK, Kwak JY, et al. Retrospective multicenter study on the development of peripheral lymphocytosis following second-line dasatinib therapy for chronic myeloid leukemia. Am J Hematol. 2011;86:346–50.

    Article  CAS  PubMed  Google Scholar 

  25. Najima Y, Yoshida C, Iriyama N, Fujisawa S, Wakita H, Chiba S, et al. Regulatory T cell inhibition by dasatinib is associated with natural killer cell differentiation and a favorable molecular response-The final results of the D-first study. Leuk Res. 2018;66:66–72.

    Article  CAS  PubMed  Google Scholar 

  26. Cao K, Wang X, Wang H, Xu C, Ma A, Zhang Y, et al. Phenotypic and functional exhaustion of circulating CD3+ CD56+ NKT-like cells in colorectal cancer patients. FASEB J. 2024;38:e23525.

    Article  CAS  PubMed  Google Scholar 

  27. Zeng X, Yao D, Liu L, Zhang Y, Lai J, Zhong J, et al. Terminal differentiation of bone marrow NK cells and increased circulation of TIGIT+ NK cells may be related to poor outcome in acute myeloid leukemia. Asia Pac J Clin Oncol. 2022;18:456–64.

    Article  PubMed  Google Scholar 

  28. Lou C, Wu K, Shi J, Dai Z, Xu Q. N-cadherin protects oral cancer cells from NK cell killing in the circulation by inducing NK cell functional exhaustion via the KLRG1 receptor. J Immunother Cancer. 2022;10:e005061.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Chen S, Tang X, Peng Y, Jiang T, Zhang X, et al. The role of KLRG1: a novel biomarker and new therapeutic target. Cell Commun Signal. 2024;22:337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu C, Cao K, Ma A, Zheng M, Xu Y, Tang L. KLRG1 expression induces functional exhaustion of NK cells in colorectal cancer patients. Cancer Immunol Immunother. 2025;74:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Golden-Mason L, McMahan RH, Strong M, Reisdorph R, Mahaffey S, Palmer BE, et al. Galectin-9 functionally impairs natural killer cells in humans and mice. J Virol. 2013;87:4835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural killer cells in the malignant niche of multiple myeloma. Front Immunol. 2022;12:816499.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yin M, Di G, Bian M. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer. Int Immunopharmacol. 2018;64:333–9.

    Article  CAS  PubMed  Google Scholar 

  34. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 costimulation: from mechanism to therapy. Immunity. 2016;44:973–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. Mol Biomed. 2025;6:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ocadlikova D, Lussana F, Fracchiolla N, Bonifacio M, Santoro L, Delia M, et al. Blinatumomab differentially modulates peripheral blood and bone marrow immune cell repertoire: A Campus ALL study. Br J Haematol. 2023;203:637–50.

    Article  CAS  PubMed  Google Scholar 

  37. Zugmaier G, Gökbuget N, Klinger M, Viardot A, Stelljes M, Neumann S, et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood. 2015;126:2578–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gökbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131:1522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jabbour E, Zugmaier G, Agrawal V, Martínez-Sánchez P, Rifón Roca JJ, Cassaday RD, et al. Single agent subcutaneous blinatumomab for advanced acute lymphoblastic leukemia. Am J Hematol. 2024;99:586–95.

    Article  CAS  PubMed  Google Scholar 

  40. Dragani M, Ansuinelli M, Papayannidis C, Fracchiolla N, Cardinali V, Cedrone M, et al. Tyrosine kinase inhibitor discontinuation in nonallografted Philadelphia-positive acute lymphoblastic leukemia patients: a Campus ALL real-life study. Haematologica. 2025;110:1177–81.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Associazione Italiana per la Ricerca sul Cancro (AIRC) 5×1000, Special Program Metastases (21198), Milan (Italy) to R.F.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and N.P. performed experiments, analyzed data and wrote the manuscript. M.S.D.P. and M.C.P. performed experiments and analyzed data. M.D.T. and L.E. performed experiments. C.S., R.C., S.S., A.R., A.T., M.C., D.V., V.C., A.M. provided clinical data and took care of the patients. S.C. designed clinical trials, provided clinical data, took care of patients and critically reviewed the manuscript. A.G. designed the research, analyzed the data, wrote and critically revised the manuscript; R.F. designed clinical trials and the research, analyzed the data, wrote and critically revised the manuscript.

Corresponding author

Correspondence to Robin Foà.

Ethics declarations

Competing interests

The authors have no conflicts of interest to disclose. The results of this study have been presented in part at the last ASH Congress: Ansuinelli M et al., Blood 2024;144 (Supplement 1):838.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41375_2025_2855_MOESM1_ESM.docx

Supplementary data for: IMMUNOMODULATORY EFFECT OF DASATINIB PLUS BLINATUMOMAB VERSUS PONATINIB PLUS BLINATUMOMAB IN NEWLY DIAGNOSED Ph+ ACUTE LYMPHOBLASTIC LEUKEMIA

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansuinelli, M., Peragine, N., De Propris, M.S. et al. Immunomodulatory effect of dasatinib plus blinatumomab versus ponatinib plus blinatumomab in newly diagnosed Ph+ acute lymphoblastic leukemia. Leukemia (2026). https://doi.org/10.1038/s41375-025-02855-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41375-025-02855-5

Search

Quick links